
Find a relation between $ x $ and $ y $ such that the point $ \left( {x,y} \right) $ is equidistant from the point $ \left( {3,6} \right) $ and $ \left( { - 3,4} \right) $ .
Answer
507.9k+ views
Hint: In the given question, we are required to find the distance of the point $ \left( {x,y} \right) $ from the points $ \left( {3,6} \right) $ and $ \left( { - 3,4} \right) $ . We will use the distance formula, that is,
$ d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Where, $ {x_2} = $ x-coordinate of second point
$ {x_1} = $ x-coordinate of first point
$ {y_2} = $ y-coordinate of second point
$ {y_1} = $ y-coordinate of first point
By using this formula, we can find the distance between the point $ \left( {x,y} \right) $ and the given two points. Then we can equate the two equations that will be obtained as they are equidistant to get the
required relation between $ x $ and $ y $ .
Complete step-by-step answer:
Let us name the given points as, $ P\left( {3,6} \right) $ and $ Q\left( { - 3,4} \right) $ .
Now, we are to find their distance from the point $ R\left( {x,y} \right) $ .
Now, by using the distance formula between two points, i.e., $ d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ , we get the distance between $ P $ and $ R $ as,
$ PR = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 6} \right)}^2}} $
Now, using the formula, $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ , we get,
$ \Rightarrow PR = \sqrt {\left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 12y + 36} \right)} $
$ \Rightarrow PR = \sqrt {{x^2} + {y^2} - 6x - 12y + 45} $
And, now, we get the distance between the points $ Q $ and $ R $ as,
$ QR = \sqrt {{{\left( {x - \left( { - 3} \right)} \right)}^2} + {{\left( {y - 4} \right)}^2}} $
$ \Rightarrow QR = \sqrt {{{\left( {x + 3} \right)}^2} + {{\left( {y - 4} \right)}^2}} $
Now, using the formula, $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ , we get,
$ \Rightarrow QR = \sqrt {\left( {{x^2} + 6x + 9} \right) + \left( {{y^2} - 8y + 16} \right)} $
$ \Rightarrow QR = \sqrt {{x^2} + {y^2} + 6x - 8y + 25} $
Now, given the points are equidistant, i.eThe distance between $ P $ and $ R $ is equal to $ Q $ and $ R $ .
Therefore, $ PR = QR $
Now, substituting the values, we get,
$ \Rightarrow \sqrt {{x^2} + {y^2} - 6x - 12y + 45} = \sqrt {{x^2} + {y^2} + 6x - 8y + 25} $
Now, squaring both sides, we get,
$ \Rightarrow {x^2} + {y^2} - 6x - 12y + 45 = {x^2} + {y^2} + 6x - 8y + 25 $
Now, cancelling the same terms from both sides, we get,
$ \Rightarrow - 6x - 12y + 45 = 6x - 8y + 25 $
Now, making right hand side $ 0 $ , by subtracting $ 6x $ , adding $ 8y $ and subtracting $ 25 $ on both sides, we get,
$ \Rightarrow - 6x - 6x - 12y + 8y + 45 - 25 = 0 $
Simplifying the equation, we get,
$ \Rightarrow - 12x - 4y + 20 = 0 $
Simplifying more by dividing both sides by $ 4 $ , we get,
$ \Rightarrow - 3x - y + 5 = 0 $
Now, multiplying both sides by $ - 1 $ , we get,
$ \Rightarrow 3x + y - 5 = 0 $
$ \Rightarrow 3x + y = 5 $
Therefore, the relation between $ x $ and $ y $ is $ 3x + y = 5 $ .
So, the correct answer is “$ 3x + y = 5 $”.
Note: -The equation that is obtained by solving the problem is the equation of a line that will contain all the points those will be equidistant from the given points $ \left( {3,6} \right) $ and $ \left( { - 3,4} \right) $ . This is the locus of the point that is equidistant from these points. Using this equation we can find every point that will be equidistant from the given points.
$ d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Where, $ {x_2} = $ x-coordinate of second point
$ {x_1} = $ x-coordinate of first point
$ {y_2} = $ y-coordinate of second point
$ {y_1} = $ y-coordinate of first point
By using this formula, we can find the distance between the point $ \left( {x,y} \right) $ and the given two points. Then we can equate the two equations that will be obtained as they are equidistant to get the
required relation between $ x $ and $ y $ .
Complete step-by-step answer:
Let us name the given points as, $ P\left( {3,6} \right) $ and $ Q\left( { - 3,4} \right) $ .
Now, we are to find their distance from the point $ R\left( {x,y} \right) $ .
Now, by using the distance formula between two points, i.e., $ d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ , we get the distance between $ P $ and $ R $ as,
$ PR = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 6} \right)}^2}} $
Now, using the formula, $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ , we get,
$ \Rightarrow PR = \sqrt {\left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 12y + 36} \right)} $
$ \Rightarrow PR = \sqrt {{x^2} + {y^2} - 6x - 12y + 45} $
And, now, we get the distance between the points $ Q $ and $ R $ as,
$ QR = \sqrt {{{\left( {x - \left( { - 3} \right)} \right)}^2} + {{\left( {y - 4} \right)}^2}} $
$ \Rightarrow QR = \sqrt {{{\left( {x + 3} \right)}^2} + {{\left( {y - 4} \right)}^2}} $
Now, using the formula, $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ , we get,
$ \Rightarrow QR = \sqrt {\left( {{x^2} + 6x + 9} \right) + \left( {{y^2} - 8y + 16} \right)} $
$ \Rightarrow QR = \sqrt {{x^2} + {y^2} + 6x - 8y + 25} $
Now, given the points are equidistant, i.eThe distance between $ P $ and $ R $ is equal to $ Q $ and $ R $ .
Therefore, $ PR = QR $
Now, substituting the values, we get,
$ \Rightarrow \sqrt {{x^2} + {y^2} - 6x - 12y + 45} = \sqrt {{x^2} + {y^2} + 6x - 8y + 25} $
Now, squaring both sides, we get,
$ \Rightarrow {x^2} + {y^2} - 6x - 12y + 45 = {x^2} + {y^2} + 6x - 8y + 25 $
Now, cancelling the same terms from both sides, we get,
$ \Rightarrow - 6x - 12y + 45 = 6x - 8y + 25 $
Now, making right hand side $ 0 $ , by subtracting $ 6x $ , adding $ 8y $ and subtracting $ 25 $ on both sides, we get,
$ \Rightarrow - 6x - 6x - 12y + 8y + 45 - 25 = 0 $
Simplifying the equation, we get,
$ \Rightarrow - 12x - 4y + 20 = 0 $
Simplifying more by dividing both sides by $ 4 $ , we get,
$ \Rightarrow - 3x - y + 5 = 0 $
Now, multiplying both sides by $ - 1 $ , we get,
$ \Rightarrow 3x + y - 5 = 0 $
$ \Rightarrow 3x + y = 5 $
Therefore, the relation between $ x $ and $ y $ is $ 3x + y = 5 $ .
So, the correct answer is “$ 3x + y = 5 $”.
Note: -The equation that is obtained by solving the problem is the equation of a line that will contain all the points those will be equidistant from the given points $ \left( {3,6} \right) $ and $ \left( { - 3,4} \right) $ . This is the locus of the point that is equidistant from these points. Using this equation we can find every point that will be equidistant from the given points.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

