
How do you find a polynomial function $f$ with real coefficients of the indicated degree that possesses the given zeros: degree $2$; $4 + 3i$?
Answer
543k+ views
Hint: in the question we are given that a second-degree polynomial function has one of its roots as $4 + 3i$, and we have to find out the polynomial equation from this information, therefore we will use the property of conjugate of imaginary root to find the polynomial.
Complete step-by-step answer:
We have one of the given roots of the polynomial as $4 + 3i$ and since it is a degree $2$ polynomial, it is a quadratic equation.
Now we know that if one imaginary number is a solution to a polynomial then the conjugate of the number is also a solution to the equation.
Now the conjugate of the solution $4 + 3i$ is $4 - 3i$, which is also the root to the equation therefore, the roots can be written as:
$x = 4 + 3i$ and $x = 4 - 3i$
On rephrasing the equation, we can write it as:
$x - (4 + 3i) = 0$ and $x - (4 - 3i) = 0$
Now the quadratic equation can be derived from the solutions of it by multiplying them therefore, the quadratic equation is:
$ \Rightarrow (x - (4 + 3i))(x - (4 - 3i))$
On opening the brackets, we get:
$ \Rightarrow (x - 4 - 3i)(x - 4 + 3i)$
Now on multiplying the terms, we get:
$ \Rightarrow {x^2} - 4x + 3xi - 4x + 16 - 12i - 3xi + 12i - 9{i^2}$
Now we know that ${i^2} = - 1$ therefore, on simplifying, we get:
$ \Rightarrow {x^2} - 8x + 16 - 9( - 1)$
On simplifying, we get:
$ \Rightarrow {x^2} - 8x + 16 + 9$
On adding the terms, we get:
$ \Rightarrow {x^2} - 8x + 25$, is the required quadratic equation with zeros $4 \pm 3i$ thus the function can be written as:
$ \Rightarrow f(x) = {x^2} - 8x + 25$
Note:
It is to be remembered that zeros of the equation represent the root or the solution of the equation, it is the term which when substituted in the equation, and we get the value as $0$.
The roots of a quadratic equation can be found using the formula $(x,y) = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2ac}}$
Where $(x,y)$ are the roots of the equation and $a,b,c$ are the coefficients of the terms in the quadratic equation.
Complete step-by-step answer:
We have one of the given roots of the polynomial as $4 + 3i$ and since it is a degree $2$ polynomial, it is a quadratic equation.
Now we know that if one imaginary number is a solution to a polynomial then the conjugate of the number is also a solution to the equation.
Now the conjugate of the solution $4 + 3i$ is $4 - 3i$, which is also the root to the equation therefore, the roots can be written as:
$x = 4 + 3i$ and $x = 4 - 3i$
On rephrasing the equation, we can write it as:
$x - (4 + 3i) = 0$ and $x - (4 - 3i) = 0$
Now the quadratic equation can be derived from the solutions of it by multiplying them therefore, the quadratic equation is:
$ \Rightarrow (x - (4 + 3i))(x - (4 - 3i))$
On opening the brackets, we get:
$ \Rightarrow (x - 4 - 3i)(x - 4 + 3i)$
Now on multiplying the terms, we get:
$ \Rightarrow {x^2} - 4x + 3xi - 4x + 16 - 12i - 3xi + 12i - 9{i^2}$
Now we know that ${i^2} = - 1$ therefore, on simplifying, we get:
$ \Rightarrow {x^2} - 8x + 16 - 9( - 1)$
On simplifying, we get:
$ \Rightarrow {x^2} - 8x + 16 + 9$
On adding the terms, we get:
$ \Rightarrow {x^2} - 8x + 25$, is the required quadratic equation with zeros $4 \pm 3i$ thus the function can be written as:
$ \Rightarrow f(x) = {x^2} - 8x + 25$
Note:
It is to be remembered that zeros of the equation represent the root or the solution of the equation, it is the term which when substituted in the equation, and we get the value as $0$.
The roots of a quadratic equation can be found using the formula $(x,y) = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2ac}}$
Where $(x,y)$ are the roots of the equation and $a,b,c$ are the coefficients of the terms in the quadratic equation.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

Discuss the main reasons for poverty in India

