
Find A) \[\left( -49 \right)\times 18\]; B) \[\left( -25 \right)\times \left( -31 \right)\]; C) \[70\times \left( -19 \right)+\left( -1 \right)\times 70\] using distributive property.
Answer
578.4k+ views
Hint: To apply distributive property to an expression containing one term convert the bigger number as a sum of two numbers or a difference of two numbers and then apply distributive property. And for the expression with two terms take the common term out and add or subtract the rest of the number.
Complete step by step answer:
A) For \[\left( -49 \right)\times 18\] express \[-49\] as a difference of 1 and 50.
Therefore,
\[\begin{align}
& \left( -49 \right)\times 18=\left( 1-50 \right)\times 18 \\
& \left( -49 \right)\times 18=1\times 18-50\times 18\text{ (By distributive property)} \\
& \left( -49 \right)\times 18=18-900 \\
& \left( -49 \right)\times 18=-882 \\
\end{align}\]
B) For \[\left( -25 \right)\times \left( -31 \right)\] express \[-31\] as a sum of \[-30\] and \[-1\].
Therefore,
\[\begin{align}
& \left( -25 \right)\times \left( -31 \right)=\left( -25 \right)\times \left\{ \left( -30 \right)+\left( -1 \right) \right\} \\
& \left( -25 \right)\times \left( -31 \right)=\left( -25 \right)\times \left( -30 \right)+\left( -25 \right)\times \left( -1 \right)\text{ (By distributive property)} \\
& \left( -25 \right)\times \left( -31 \right)=750+25 \\
& \left( -25 \right)\times \left( -31 \right)=775 \\
\end{align}\]
C) Now for \[70\times \left( -19 \right)+\left( -1 \right)\times 70\] take 70 common from both terms then add the remaining terms and multiply with the common term.
Therefore,
\[\begin{align}
& 70\times \left( -19 \right)+\left( -1 \right)\times 70=70\times \left\{ \left( -19 \right)+\left( -1 \right) \right\}\text{ (by distributive property)} \\
& 70\times \left( -19 \right)+\left( -1 \right)\times 70=70\times \left( -20 \right) \\
& 70\times \left( -19 \right)+\left( -1 \right)\times 70=-1400 \\
\end{align}\]
Note: While expressing the number as a sum or difference of two numbers always make sure to express it in a simpler number like \[-49\] as a difference of 1 and 50.
Complete step by step answer:
A) For \[\left( -49 \right)\times 18\] express \[-49\] as a difference of 1 and 50.
Therefore,
\[\begin{align}
& \left( -49 \right)\times 18=\left( 1-50 \right)\times 18 \\
& \left( -49 \right)\times 18=1\times 18-50\times 18\text{ (By distributive property)} \\
& \left( -49 \right)\times 18=18-900 \\
& \left( -49 \right)\times 18=-882 \\
\end{align}\]
B) For \[\left( -25 \right)\times \left( -31 \right)\] express \[-31\] as a sum of \[-30\] and \[-1\].
Therefore,
\[\begin{align}
& \left( -25 \right)\times \left( -31 \right)=\left( -25 \right)\times \left\{ \left( -30 \right)+\left( -1 \right) \right\} \\
& \left( -25 \right)\times \left( -31 \right)=\left( -25 \right)\times \left( -30 \right)+\left( -25 \right)\times \left( -1 \right)\text{ (By distributive property)} \\
& \left( -25 \right)\times \left( -31 \right)=750+25 \\
& \left( -25 \right)\times \left( -31 \right)=775 \\
\end{align}\]
C) Now for \[70\times \left( -19 \right)+\left( -1 \right)\times 70\] take 70 common from both terms then add the remaining terms and multiply with the common term.
Therefore,
\[\begin{align}
& 70\times \left( -19 \right)+\left( -1 \right)\times 70=70\times \left\{ \left( -19 \right)+\left( -1 \right) \right\}\text{ (by distributive property)} \\
& 70\times \left( -19 \right)+\left( -1 \right)\times 70=70\times \left( -20 \right) \\
& 70\times \left( -19 \right)+\left( -1 \right)\times 70=-1400 \\
\end{align}\]
Note: While expressing the number as a sum or difference of two numbers always make sure to express it in a simpler number like \[-49\] as a difference of 1 and 50.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


