
Find a cubic polynomial with the sum, sum of the product of its zeros taken two at a time, and the product of its zeros as 3, -1, -3 respectively.
Answer
535.5k+ views
Hint: To solve this problem, one should have theoretical knowledge of cubic equations and the relationship between their coefficients and roots. The formulas that will be used to verify this relationship are-\[\alpha +\beta +\gamma =-\dfrac{b}{a}\], \[\alpha \beta +\gamma \beta +\gamma \alpha =\dfrac{c}{a}\] and \[\alpha \beta \gamma =-\dfrac{d}{a}\]. So, using the information given in the question and these three formulas, we will first reform the cubic equation and then we will obtain the equation of the cubic polynomial.
Complete step by step solution:
Let the equation be $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$
We will divide both sides by a in the above equation, and then apply the formula for the relationship between the roots and the coefficients, which is given by
\[\alpha +\beta +\gamma =-\dfrac{b}{a}\], \[\alpha \beta +\gamma \beta +\gamma \alpha =\dfrac{c}{a}\] and \[\alpha \beta \gamma =-\dfrac{d}{a}\].
As it is given that the sum, sum of the product of its zeros taken two at a time, and the product of its zeros as 3, -1, -3 which means
\[\alpha +\beta +\gamma =3\], \[\alpha \beta +\gamma \beta +\gamma \alpha =-1\] and \[\alpha \beta \gamma = -3\].
So, here, we can see that we can substitute these formulas in the equation-
${{x}^{3}}+\dfrac{b}{a}{{x}^{2}}+\dfrac{c}{a}x+\dfrac{d}{a}=0$
\[{{x}^{3}}-\left( \alpha +\beta +\gamma \right){{x}^{2}}+\left( \alpha \beta +\gamma \beta +\gamma \alpha \right)x-\alpha \beta \gamma \text{=0 }\]
We put the given values to get
\[{{x}^{3}}-\left( 3 \right){{x}^{2}}+\left( -1 \right)x+\left( 3 \right)\text{=0 }\]
On simplifying, we get
\[{{x}^{3}}-3{{x}^{2}}-x+3=0\]
Thus, the required cubic polynomial with sum, sum of the product of its zeros taken two at a time, and the product of its zeros 3, -1 and -3 respectively is equals to \[{{x}^{3}}-3{{x}^{2}}-x+3=0\].
Note: Always remember that general equation of cubic polynomial is $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$, where a, b, c and d belongs to set of real numbers and also keep the logic remember that number of roots of polynomial is equals to highest power of x in polynomial. The most common mistake here is that students often forget the negative sign in the sum and the product of roots formula. Try not to make any calculation errors while solving the question.
Complete step by step solution:
Let the equation be $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$
We will divide both sides by a in the above equation, and then apply the formula for the relationship between the roots and the coefficients, which is given by
\[\alpha +\beta +\gamma =-\dfrac{b}{a}\], \[\alpha \beta +\gamma \beta +\gamma \alpha =\dfrac{c}{a}\] and \[\alpha \beta \gamma =-\dfrac{d}{a}\].
As it is given that the sum, sum of the product of its zeros taken two at a time, and the product of its zeros as 3, -1, -3 which means
\[\alpha +\beta +\gamma =3\], \[\alpha \beta +\gamma \beta +\gamma \alpha =-1\] and \[\alpha \beta \gamma = -3\].
So, here, we can see that we can substitute these formulas in the equation-
${{x}^{3}}+\dfrac{b}{a}{{x}^{2}}+\dfrac{c}{a}x+\dfrac{d}{a}=0$
\[{{x}^{3}}-\left( \alpha +\beta +\gamma \right){{x}^{2}}+\left( \alpha \beta +\gamma \beta +\gamma \alpha \right)x-\alpha \beta \gamma \text{=0 }\]
We put the given values to get
\[{{x}^{3}}-\left( 3 \right){{x}^{2}}+\left( -1 \right)x+\left( 3 \right)\text{=0 }\]
On simplifying, we get
\[{{x}^{3}}-3{{x}^{2}}-x+3=0\]
Thus, the required cubic polynomial with sum, sum of the product of its zeros taken two at a time, and the product of its zeros 3, -1 and -3 respectively is equals to \[{{x}^{3}}-3{{x}^{2}}-x+3=0\].
Note: Always remember that general equation of cubic polynomial is $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$, where a, b, c and d belongs to set of real numbers and also keep the logic remember that number of roots of polynomial is equals to highest power of x in polynomial. The most common mistake here is that students often forget the negative sign in the sum and the product of roots formula. Try not to make any calculation errors while solving the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

