
Fill in the blank:
Two perfect numbers are \[\_\] and \[\_\].
Answer
507.6k+ views
Hint: To find the perfect numbers, we should know what really a perfect number is. A perfect number is a positive integer that is equal to the sum of all the positive divisors of the number, except the number itself. So, add the divisors or factors of positive integer excluding that number. If the sum is equal to that number, then the number is perfect.
Complete step-by-step solution:
We know that a perfect number is a positive integer that is equal to the sum of all the positive divisors of the number, except the number itself. That is if \[n \in {Z^ + }\], where \[{Z^ + }\] is a set of positive integers, and \[1,a,b,c,n\] are the factors of \[n\]. Then if \[1 + a + b + c = n\], then \[n\] is a perfect number.
For ex., factors of \[6\] are\[1,2,3,6\]. If we add those factors except \[6\] we get \[1 + 2 + 3 = 6\] , that is the number itself. So, \[6\] is a perfect number.
Same way , factors of \[28\] are \[1,2,4,7,14,28\]. If we add those factors except \[28\], we get \[1 + 2 + 4 + 7 + 14 = 28\], that is the number itself. So, \[28\] is a perfect number.
So, we fill in the blanks as Two perfect numbers are \[\underline 6 \] and \[\underline {28} \].
Note: To find the perfect number, beside hit and trial method there is also a formula given by Euclid. Euclid approximately over two thousand years ago, had shown that all even perfect numbers can be represented by, $N = 2p-1(2p -1)$ where p is a prime for which 2p -1 is a Mersenne prime. Some of the perfect numbers are \[6,28,496,8128\,etc.\]
Complete step-by-step solution:
We know that a perfect number is a positive integer that is equal to the sum of all the positive divisors of the number, except the number itself. That is if \[n \in {Z^ + }\], where \[{Z^ + }\] is a set of positive integers, and \[1,a,b,c,n\] are the factors of \[n\]. Then if \[1 + a + b + c = n\], then \[n\] is a perfect number.
For ex., factors of \[6\] are\[1,2,3,6\]. If we add those factors except \[6\] we get \[1 + 2 + 3 = 6\] , that is the number itself. So, \[6\] is a perfect number.
Same way , factors of \[28\] are \[1,2,4,7,14,28\]. If we add those factors except \[28\], we get \[1 + 2 + 4 + 7 + 14 = 28\], that is the number itself. So, \[28\] is a perfect number.
So, we fill in the blanks as Two perfect numbers are \[\underline 6 \] and \[\underline {28} \].
Note: To find the perfect number, beside hit and trial method there is also a formula given by Euclid. Euclid approximately over two thousand years ago, had shown that all even perfect numbers can be represented by, $N = 2p-1(2p -1)$ where p is a prime for which 2p -1 is a Mersenne prime. Some of the perfect numbers are \[6,28,496,8128\,etc.\]
Recently Updated Pages
Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

Repeated addition of the same number is called a addition class 7 maths CBSE


