
Factorize \[{{x}^{3}}-\ 3{{x}^{2}}\ -\ 9x\ -5\] :-
a) \[{{\left( x\ +\ 1 \right)}^{2}}\ \left( x\ -\ 5 \right)\],
b) \[{{\left( x\ -\ 1 \right)}^{2}}\ \left( x\ -\ 5 \right)\],
c) \[\left( x\text{ }+\text{ }1 \right)\text{ }\left( x\text{ }+\text{ }5 \right)\text{ }\left( x\text{ }\text{ }1 \right)\],
d) None of these.
Answer
560.4k+ views
Hint: We start solving the problem assigning a variable for the given polynomial. We can see that the sum of the coefficients of odd powers of x is equal to the sum of the coefficients of even powers of x which leads to our first factor $\left( x+1 \right)$. We then divide the polynomial ${{x}^{3}}-3{{x}^{2}}-9x-5$ with $\left( x+1 \right)$ to get the quotient which contains multiplication of other factors. We then factorize the quotient and find the remaining two factors.
Complete step by step answer:
According to the problem, we have to find the factorization of the polynomial ${{x}^{3}}-3{{x}^{2}}-9x-5$.
Let us assume the given polynomial as $f\left( x \right)$.
So, we have $f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x-5$---(1).
Let us find the sum of the coefficients of odd powers of x.
We have a sum of odd powers of x = $1-9=-8$ ---(2).
Let us find the sum of the coefficients of even powers of x.
We have the sum of even powers of x = $-3-5=-8$ ---(3).
From (2) and (3), we can see that the sum of coefficients of odd powers of x is equal to the sum of even coefficients of x.
We know that if the sum of coefficients of odd powers of x is equal to the sum of even coefficients of x for a given polynomial then $\left( x+1 \right)$ will be a factor of that polynomial.
Let us divide the polynomial $f\left( x \right)$ with $\left( x+1 \right)$.
\[\begin{align}
& \left. x+1 \right){{x}^{3}}-3{{x}^{2}}-9x-5\left( {{x}^{2}} \right.-4x-5 \\
& \underline{\text{ }{{x}^{3}}+{{x}^{2}}\text{ }} \\
& \text{ }0{{x}^{3}}-4{{x}^{2}}-9x-5 \\
& \underline{\text{ }0{{x}^{3}}-4{{x}^{2}}-4x\text{ }} \\
& \text{ }0{{x}^{3}}+0{{x}^{2}}-5x-5 \\
& \underline{\text{ }0{{x}^{3}}+0{{x}^{2}}-5x-5\text{ }} \\
& \text{ }0{{x}^{3}}+0{{x}^{2}}+0x+0 \\
\end{align}\].
So, we can write $f\left( x \right)$ as\[f\left( x \right)=\left( x+1 \right)\times \left( {{x}^{2}}-4x-5 \right)\].
Now we factorize ${{x}^{2}}-4x-5$.
\[f\left( x \right)=\left( x+1 \right)\times \left( {{x}^{2}}-5x+x-5 \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( x\left( x-5 \right)+1\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( \left( x+1 \right)\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\left( x+1 \right)\left( x-5 \right)\].
\[\Rightarrow f\left( x \right)={{\left( x+1 \right)}^{2}}\left( x-5 \right)\].
We have found the factorization of ${{x}^{3}}-3{{x}^{2}}-9x-5$ as \[{{\left( x+1 \right)}^{2}}\left( x-5 \right)\].
So, the correct answer is “Option a”.
Note: Alternatively, we can also solve the problem as follows:
$f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x-5$.
$\Rightarrow f\left( x \right)={{x}^{3}}+{{x}^{2}}-4{{x}^{2}}-4x-5x-5$.
$\Rightarrow f\left( x \right)={{x}^{2}}\left( x+1 \right)-4x\left( x+1 \right)-5\left( x+1 \right)$.
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\left( {{x}^{2}}-4x-5 \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( {{x}^{2}}-5x+x-5 \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( x\left( x-5 \right)+1\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( \left( x+1 \right)\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\left( x+1 \right)\left( x-5 \right)\].
\[\Rightarrow f\left( x \right)={{\left( x+1 \right)}^{2}}\left( x-5 \right)\].
Complete step by step answer:
According to the problem, we have to find the factorization of the polynomial ${{x}^{3}}-3{{x}^{2}}-9x-5$.
Let us assume the given polynomial as $f\left( x \right)$.
So, we have $f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x-5$---(1).
Let us find the sum of the coefficients of odd powers of x.
We have a sum of odd powers of x = $1-9=-8$ ---(2).
Let us find the sum of the coefficients of even powers of x.
We have the sum of even powers of x = $-3-5=-8$ ---(3).
From (2) and (3), we can see that the sum of coefficients of odd powers of x is equal to the sum of even coefficients of x.
We know that if the sum of coefficients of odd powers of x is equal to the sum of even coefficients of x for a given polynomial then $\left( x+1 \right)$ will be a factor of that polynomial.
Let us divide the polynomial $f\left( x \right)$ with $\left( x+1 \right)$.
\[\begin{align}
& \left. x+1 \right){{x}^{3}}-3{{x}^{2}}-9x-5\left( {{x}^{2}} \right.-4x-5 \\
& \underline{\text{ }{{x}^{3}}+{{x}^{2}}\text{ }} \\
& \text{ }0{{x}^{3}}-4{{x}^{2}}-9x-5 \\
& \underline{\text{ }0{{x}^{3}}-4{{x}^{2}}-4x\text{ }} \\
& \text{ }0{{x}^{3}}+0{{x}^{2}}-5x-5 \\
& \underline{\text{ }0{{x}^{3}}+0{{x}^{2}}-5x-5\text{ }} \\
& \text{ }0{{x}^{3}}+0{{x}^{2}}+0x+0 \\
\end{align}\].
So, we can write $f\left( x \right)$ as\[f\left( x \right)=\left( x+1 \right)\times \left( {{x}^{2}}-4x-5 \right)\].
Now we factorize ${{x}^{2}}-4x-5$.
\[f\left( x \right)=\left( x+1 \right)\times \left( {{x}^{2}}-5x+x-5 \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( x\left( x-5 \right)+1\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( \left( x+1 \right)\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\left( x+1 \right)\left( x-5 \right)\].
\[\Rightarrow f\left( x \right)={{\left( x+1 \right)}^{2}}\left( x-5 \right)\].
We have found the factorization of ${{x}^{3}}-3{{x}^{2}}-9x-5$ as \[{{\left( x+1 \right)}^{2}}\left( x-5 \right)\].
So, the correct answer is “Option a”.
Note: Alternatively, we can also solve the problem as follows:
$f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x-5$.
$\Rightarrow f\left( x \right)={{x}^{3}}+{{x}^{2}}-4{{x}^{2}}-4x-5x-5$.
$\Rightarrow f\left( x \right)={{x}^{2}}\left( x+1 \right)-4x\left( x+1 \right)-5\left( x+1 \right)$.
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\left( {{x}^{2}}-4x-5 \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( {{x}^{2}}-5x+x-5 \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( x\left( x-5 \right)+1\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\times \left( \left( x+1 \right)\left( x-5 \right) \right)\].
\[\Rightarrow f\left( x \right)=\left( x+1 \right)\left( x+1 \right)\left( x-5 \right)\].
\[\Rightarrow f\left( x \right)={{\left( x+1 \right)}^{2}}\left( x-5 \right)\].
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


