
Factorize $ {x^3} - {1^3} $ .
Answer
524.7k+ views
Hint: To find the factors of $ {x^3} - {1^3} $ , we are going to use the Polynomial remainder theorem. According to this theorem, $ x - a $ is a factor of f(x) if $ f\left( a \right) = 0 $ . Here, $ f\left( 1 \right) = 0 $ , so $ \left( {x - 1} \right) $ is one of the factors of the given polynomial. To find the other factors, we will be using the long division method. Long division method is explained in detail below.
Complete step-by-step answer:
In this question, we have to factorize $ {x^3} - {1^3} $ .
Generally, polynomials can be factored using the Polynomial remainder theorem.
Let us see what this theorem is.
For a given polynomial, $ x - a $ is a divisor of f(x) if $ f\left( a \right) = 0 $ . That means if we are given a polynomial and if we put a in place of x in the given polynomial and if we get value 0, then $ x - a $ will be one of the factors of the given polynomial.
Here, in our given polynomial if let us find f(1).
$ \Rightarrow f\left( 1 \right) = {\left( 1 \right)^3} - {1^3} = 1 - 1 = 0 $
Hence, $ \left( {x - 1} \right) $ is one of the factors of the given polynomial $ {x^3} - {1^3} $ .
Now, to find out other factors, we need to carry out a long division method.
Steps for long division:
First of all, write $ \left( {x - 1} \right) $ as divisor and $ {x^3} - {1^3} $ as dividend.
$ \Rightarrow x - 1\left| \!{\overline {\,
{{x^3} - {1^3}} \,}} \right. $
Now, we need $ {x^3} $ so multiply $ \left( {x - 1} \right) $ with $ {x^2} $ . Therefore, $ \left( {x - 1} \right){x^2} = {x^3} - {x^2} $
So, therefore now subtract $ {x^3} - {x^2} $ from $ {x^3} - {1^3} $
$ \Rightarrow {x^3} - {1^3} - {x^3} + {x^2} = {x^2} - 1 $ and quotient $ = {x^2} $
Now, we need to get $ {x^2} $ , so multiply $ \left( {x - 1} \right) $ with x. Therefore, $ \left( {x - 1} \right)x = {x^2} - x $
So, therefore now subtract $ {x^2} - x $ from $ {x^2} - 1 $
$ \Rightarrow {x^2} - 1 - {x^2} + x = x - 1 $ and quotient $ = {x^2} + x $
Now, we need to multiply $ \left( {x - 1} \right) $ with 1. Therefore, $ \left( {x - 1} \right)1 = x - 1 $
So, therefore now subtract $ x - 1 $ from $ x - 1 $
$ \Rightarrow x - 1 - x + 1 = 0 $ and quotient $ = {x^2} + x + 1 $
Hence, the other factor of $ {x^3} - {1^3} $ is $ {x^2} + x + 1 $ .
Hence, $ {x^3} - {1^3} = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) $ .
So, the correct answer is “ $ \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) $ ”.
Note: We can also solve this using the mathematical identity.
The identity is: $ {a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) $
Here, $ a = x $ and $ b = 1 $ .
Therefore, $ {x^3} - {1^3} = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) $
Hence, the factors of $ {x^3} - {1^3} $ are $ \left( {x - 1} \right) $ and $ \left( {{x^2} + x + 1} \right) $ .
Complete step-by-step answer:
In this question, we have to factorize $ {x^3} - {1^3} $ .
Generally, polynomials can be factored using the Polynomial remainder theorem.
Let us see what this theorem is.
For a given polynomial, $ x - a $ is a divisor of f(x) if $ f\left( a \right) = 0 $ . That means if we are given a polynomial and if we put a in place of x in the given polynomial and if we get value 0, then $ x - a $ will be one of the factors of the given polynomial.
Here, in our given polynomial if let us find f(1).
$ \Rightarrow f\left( 1 \right) = {\left( 1 \right)^3} - {1^3} = 1 - 1 = 0 $
Hence, $ \left( {x - 1} \right) $ is one of the factors of the given polynomial $ {x^3} - {1^3} $ .
Now, to find out other factors, we need to carry out a long division method.
Steps for long division:
First of all, write $ \left( {x - 1} \right) $ as divisor and $ {x^3} - {1^3} $ as dividend.
$ \Rightarrow x - 1\left| \!{\overline {\,
{{x^3} - {1^3}} \,}} \right. $
Now, we need $ {x^3} $ so multiply $ \left( {x - 1} \right) $ with $ {x^2} $ . Therefore, $ \left( {x - 1} \right){x^2} = {x^3} - {x^2} $
So, therefore now subtract $ {x^3} - {x^2} $ from $ {x^3} - {1^3} $
$ \Rightarrow {x^3} - {1^3} - {x^3} + {x^2} = {x^2} - 1 $ and quotient $ = {x^2} $
Now, we need to get $ {x^2} $ , so multiply $ \left( {x - 1} \right) $ with x. Therefore, $ \left( {x - 1} \right)x = {x^2} - x $
So, therefore now subtract $ {x^2} - x $ from $ {x^2} - 1 $
$ \Rightarrow {x^2} - 1 - {x^2} + x = x - 1 $ and quotient $ = {x^2} + x $
Now, we need to multiply $ \left( {x - 1} \right) $ with 1. Therefore, $ \left( {x - 1} \right)1 = x - 1 $
So, therefore now subtract $ x - 1 $ from $ x - 1 $
$ \Rightarrow x - 1 - x + 1 = 0 $ and quotient $ = {x^2} + x + 1 $
Hence, the other factor of $ {x^3} - {1^3} $ is $ {x^2} + x + 1 $ .
Hence, $ {x^3} - {1^3} = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) $ .
So, the correct answer is “ $ \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) $ ”.
Note: We can also solve this using the mathematical identity.
The identity is: $ {a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) $
Here, $ a = x $ and $ b = 1 $ .
Therefore, $ {x^3} - {1^3} = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) $
Hence, the factors of $ {x^3} - {1^3} $ are $ \left( {x - 1} \right) $ and $ \left( {{x^2} + x + 1} \right) $ .
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

