
Factorize the given term $ {{a}^{3}}-{{b}^{3}}+1+3ab $ ?
Answer
553.8k+ views
Hint: We start solving the problem by converting the given $ {{a}^{3}}-{{b}^{3}}+1+3ab $ to a form that resembles $ {{p}^{3}}+{{q}^{3}}+{{r}^{3}}-3pqr $ . We then expand it by making use of the result $ {{p}^{3}}+{{q}^{3}}+{{r}^{3}}-3pqr=\left( p+q+r \right)\left( {{p}^{2}}+{{q}^{2}}+{{r}^{2}}-pq-qr-pr \right) $ . We then make the necessary calculations to get the required factors of $ {{a}^{3}}-{{b}^{3}}+1+3ab $ .
Complete step by step answer:
According to the problem, we need to factorize the given term $ {{a}^{3}}-{{b}^{3}}+1+3ab $
Let us first simplify the given $ {{a}^{3}}-{{b}^{3}}+1+3ab $ .
So, we have $ {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a \right)}^{3}}+{{\left( -b \right)}^{3}}+{{\left( 1 \right)}^{3}}-3\left( a \right)\left( -b \right) $
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a \right)}^{3}}+{{\left( -b \right)}^{3}}+{{\left( 1 \right)}^{3}}-3\left( a \right)\left( -b \right)\left( 1 \right) $ ---(1).
We can see that the term $ {{\left( a \right)}^{3}}+{{\left( -b \right)}^{3}}+{{\left( 1 \right)}^{3}}-3\left( a \right)\left( -b \right)\left( 1 \right) $ resembles the term $ {{p}^{3}}+{{q}^{3}}+{{r}^{3}}-3pqr $ . We know that this is equal to $ \left( p+q+r \right)\left( {{p}^{2}}+{{q}^{2}}+{{r}^{2}}-pq-qr-pr \right) $ . We use this result in equation (1).
So, we get $ {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{\left( -b \right)}^{2}}+{{1}^{2}}-\left( a \right)\left( -b \right)-\left( -b \right)\left( 1 \right)-\left( 1 \right)\left( a \right) \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}+1+ab+b-a \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-a+b+ab-1 \right) $ .
We can see that the factors of $ {{a}^{3}}-{{b}^{3}}+1+3ab $ are $ a-b+1 $ and $ {{a}^{2}}+{{b}^{2}}-a+b+ab-1 $ .
$ \therefore $ The factorization of $ {{a}^{3}}-{{b}^{3}}+1+3ab $ is $ \left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-a+b+ab-1 \right) $ .
Note:
Whenever we get this type of problem, we try to convert it into the standard forms to make use of their results. We can also solve the given problem as shown below:
We have given $ {{a}^{3}}-{{b}^{3}}+1+3ab $ ---(2).
We know that $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ . Let us use this result in equation in (2).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)+1+3ab $ ---(3).
Let us add and subtract $ 2ab $ to $ {{a}^{2}}+{{b}^{2}}+ab $ in equation (3).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab+2ab-2ab \right)+1+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+3ab \right)+1+3ab $ ---(4).
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us use this in equation (4).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{\left( a-b \right)}^{2}}+3ab \right)+1+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a-b \right)}^{3}}+3ab\left( a-b \right)+1+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a-b \right)}^{3}}+{{1}^{3}}+3ab\left( a-b \right)+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a-b \right)}^{3}}+{{1}^{3}}+3ab\left( a-b+1 \right) $ ---(5).
We can see that $ {{\left( a-b \right)}^{3}}+{{1}^{3}} $ resembles $ {{p}^{3}}+{{q}^{3}} $ which is equal to $ \left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) $ . Let us use this result in equation (5).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{\left( a-b \right)}^{2}}+{{1}^{2}}-\left( a-b \right)\left( 1 \right) \right)+3ab\left( a-b+1 \right) $ ---(6).
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us use this in equation (6).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+1-a+b \right)+3ab\left( a-b+1 \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+1-a+b+3ab \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-a+b+ab+1 \right) $ .
Complete step by step answer:
According to the problem, we need to factorize the given term $ {{a}^{3}}-{{b}^{3}}+1+3ab $
Let us first simplify the given $ {{a}^{3}}-{{b}^{3}}+1+3ab $ .
So, we have $ {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a \right)}^{3}}+{{\left( -b \right)}^{3}}+{{\left( 1 \right)}^{3}}-3\left( a \right)\left( -b \right) $
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a \right)}^{3}}+{{\left( -b \right)}^{3}}+{{\left( 1 \right)}^{3}}-3\left( a \right)\left( -b \right)\left( 1 \right) $ ---(1).
We can see that the term $ {{\left( a \right)}^{3}}+{{\left( -b \right)}^{3}}+{{\left( 1 \right)}^{3}}-3\left( a \right)\left( -b \right)\left( 1 \right) $ resembles the term $ {{p}^{3}}+{{q}^{3}}+{{r}^{3}}-3pqr $ . We know that this is equal to $ \left( p+q+r \right)\left( {{p}^{2}}+{{q}^{2}}+{{r}^{2}}-pq-qr-pr \right) $ . We use this result in equation (1).
So, we get $ {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{\left( -b \right)}^{2}}+{{1}^{2}}-\left( a \right)\left( -b \right)-\left( -b \right)\left( 1 \right)-\left( 1 \right)\left( a \right) \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}+1+ab+b-a \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-a+b+ab-1 \right) $ .
We can see that the factors of $ {{a}^{3}}-{{b}^{3}}+1+3ab $ are $ a-b+1 $ and $ {{a}^{2}}+{{b}^{2}}-a+b+ab-1 $ .
$ \therefore $ The factorization of $ {{a}^{3}}-{{b}^{3}}+1+3ab $ is $ \left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-a+b+ab-1 \right) $ .
Note:
Whenever we get this type of problem, we try to convert it into the standard forms to make use of their results. We can also solve the given problem as shown below:
We have given $ {{a}^{3}}-{{b}^{3}}+1+3ab $ ---(2).
We know that $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ . Let us use this result in equation in (2).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)+1+3ab $ ---(3).
Let us add and subtract $ 2ab $ to $ {{a}^{2}}+{{b}^{2}}+ab $ in equation (3).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab+2ab-2ab \right)+1+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+3ab \right)+1+3ab $ ---(4).
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us use this in equation (4).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b \right)\left( {{\left( a-b \right)}^{2}}+3ab \right)+1+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a-b \right)}^{3}}+3ab\left( a-b \right)+1+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a-b \right)}^{3}}+{{1}^{3}}+3ab\left( a-b \right)+3ab $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab={{\left( a-b \right)}^{3}}+{{1}^{3}}+3ab\left( a-b+1 \right) $ ---(5).
We can see that $ {{\left( a-b \right)}^{3}}+{{1}^{3}} $ resembles $ {{p}^{3}}+{{q}^{3}} $ which is equal to $ \left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) $ . Let us use this result in equation (5).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{\left( a-b \right)}^{2}}+{{1}^{2}}-\left( a-b \right)\left( 1 \right) \right)+3ab\left( a-b+1 \right) $ ---(6).
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us use this in equation (6).
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+1-a+b \right)+3ab\left( a-b+1 \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+1-a+b+3ab \right) $ .
$ \Rightarrow {{a}^{3}}-{{b}^{3}}+1+3ab=\left( a-b+1 \right)\left( {{a}^{2}}+{{b}^{2}}-a+b+ab+1 \right) $ .
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

