
How do you factorize the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$?
Answer
563.1k+ views
Hint: We start solving the problem by writing all the terms in the polynomial as a multiplication of two terms. We then take the common terms present in the polynomial after multiplication to problems. We then make use of the result ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ to proceed through the problem. We then make use of the results ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$ to proceed through the problem. We then make the necessary arrangements in the obtained result to get the required result.
Complete step by step answer:
According to the problem, we are asked to factorize the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
We have given the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}\times {{x}^{3}} \right)+\left( {{x}^{6}}\times -1 \right)+\left( -1\times {{x}^{3}} \right)+\left( -1\times -1 \right)$ ---(1).
Now, let us take out the common factor from the equation (1) to find the other factors of the given polynomial.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1={{x}^{6}}\times \left( {{x}^{3}}-1 \right)-1\times \left( {{x}^{3}}-1 \right)$ ---(2).
Let us take the common terms present in equation (2).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{\left( {{x}^{3}} \right)}^{2}}-{{1}^{2}} \right)\left( {{x}^{3}}-1 \right)$ ---(3).
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Let us use this result in equation (3).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+1 \right)\left( {{x}^{3}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)$ ---(4).
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$. Let us use these results in equation (4).
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}+{{1}^{2}}-\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
So, we have found the factors of the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ as \[\left( x+1 \right)\], \[\left( {{x}^{2}}-x+1 \right)\], \[\left( x-1 \right)\], \[\left( x-1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\].
$\therefore $ The factorization of the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ is \[\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
Note: Whenever we get this type of problems, we first try to find the common multiples (factors) in all the terms present in the polynomial. We should keep in mind that we need to get the same polynomial after multiplying the factors obtained from factorization. We should make calculation mistakes while solving this problem. Similarly, we can expect problems to find the factorization of the polynomial ${{x}^{8}}-{{x}^{4}}-{{x}^{2}}+1$.
Complete step by step answer:
According to the problem, we are asked to factorize the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
We have given the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}\times {{x}^{3}} \right)+\left( {{x}^{6}}\times -1 \right)+\left( -1\times {{x}^{3}} \right)+\left( -1\times -1 \right)$ ---(1).
Now, let us take out the common factor from the equation (1) to find the other factors of the given polynomial.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1={{x}^{6}}\times \left( {{x}^{3}}-1 \right)-1\times \left( {{x}^{3}}-1 \right)$ ---(2).
Let us take the common terms present in equation (2).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{\left( {{x}^{3}} \right)}^{2}}-{{1}^{2}} \right)\left( {{x}^{3}}-1 \right)$ ---(3).
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Let us use this result in equation (3).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+1 \right)\left( {{x}^{3}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)$ ---(4).
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$. Let us use these results in equation (4).
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}+{{1}^{2}}-\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
So, we have found the factors of the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ as \[\left( x+1 \right)\], \[\left( {{x}^{2}}-x+1 \right)\], \[\left( x-1 \right)\], \[\left( x-1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\].
$\therefore $ The factorization of the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ is \[\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
Note: Whenever we get this type of problems, we first try to find the common multiples (factors) in all the terms present in the polynomial. We should keep in mind that we need to get the same polynomial after multiplying the factors obtained from factorization. We should make calculation mistakes while solving this problem. Similarly, we can expect problems to find the factorization of the polynomial ${{x}^{8}}-{{x}^{4}}-{{x}^{2}}+1$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

