
How do you factorize the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$?
Answer
468.3k+ views
Hint: We start solving the problem by writing all the terms in the polynomial as a multiplication of two terms. We then take the common terms present in the polynomial after multiplication to problems. We then make use of the result ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ to proceed through the problem. We then make use of the results ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$ to proceed through the problem. We then make the necessary arrangements in the obtained result to get the required result.
Complete step by step answer:
According to the problem, we are asked to factorize the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
We have given the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}\times {{x}^{3}} \right)+\left( {{x}^{6}}\times -1 \right)+\left( -1\times {{x}^{3}} \right)+\left( -1\times -1 \right)$ ---(1).
Now, let us take out the common factor from the equation (1) to find the other factors of the given polynomial.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1={{x}^{6}}\times \left( {{x}^{3}}-1 \right)-1\times \left( {{x}^{3}}-1 \right)$ ---(2).
Let us take the common terms present in equation (2).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{\left( {{x}^{3}} \right)}^{2}}-{{1}^{2}} \right)\left( {{x}^{3}}-1 \right)$ ---(3).
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Let us use this result in equation (3).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+1 \right)\left( {{x}^{3}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)$ ---(4).
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$. Let us use these results in equation (4).
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}+{{1}^{2}}-\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
So, we have found the factors of the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ as \[\left( x+1 \right)\], \[\left( {{x}^{2}}-x+1 \right)\], \[\left( x-1 \right)\], \[\left( x-1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\].
$\therefore $ The factorization of the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ is \[\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
Note: Whenever we get this type of problems, we first try to find the common multiples (factors) in all the terms present in the polynomial. We should keep in mind that we need to get the same polynomial after multiplying the factors obtained from factorization. We should make calculation mistakes while solving this problem. Similarly, we can expect problems to find the factorization of the polynomial ${{x}^{8}}-{{x}^{4}}-{{x}^{2}}+1$.
Complete step by step answer:
According to the problem, we are asked to factorize the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
We have given the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}\times {{x}^{3}} \right)+\left( {{x}^{6}}\times -1 \right)+\left( -1\times {{x}^{3}} \right)+\left( -1\times -1 \right)$ ---(1).
Now, let us take out the common factor from the equation (1) to find the other factors of the given polynomial.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1={{x}^{6}}\times \left( {{x}^{3}}-1 \right)-1\times \left( {{x}^{3}}-1 \right)$ ---(2).
Let us take the common terms present in equation (2).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{6}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{\left( {{x}^{3}} \right)}^{2}}-{{1}^{2}} \right)\left( {{x}^{3}}-1 \right)$ ---(3).
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Let us use this result in equation (3).
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+1 \right)\left( {{x}^{3}}-1 \right)\left( {{x}^{3}}-1 \right)$.
$\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( {{x}^{3}}+{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)\left( {{x}^{3}}-{{1}^{3}} \right)$ ---(4).
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$. Let us use these results in equation (4).
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}+{{1}^{2}}-\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\left( x-1 \right)\left( {{x}^{2}}+{{1}^{2}}+\left( x \right)\left( 1 \right) \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\].
\[\Rightarrow {{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
So, we have found the factors of the polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ as \[\left( x+1 \right)\], \[\left( {{x}^{2}}-x+1 \right)\], \[\left( x-1 \right)\], \[\left( x-1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\], \[\left( {{x}^{2}}+x+1 \right)\].
$\therefore $ The factorization of the given polynomial ${{x}^{9}}-{{x}^{6}}-{{x}^{3}}+1$ is \[\left( x+1 \right)\left( {{x}^{2}}-x+1 \right){{\left( x-1 \right)}^{2}}{{\left( {{x}^{2}}+x+1 \right)}^{2}}\].
Note: Whenever we get this type of problems, we first try to find the common multiples (factors) in all the terms present in the polynomial. We should keep in mind that we need to get the same polynomial after multiplying the factors obtained from factorization. We should make calculation mistakes while solving this problem. Similarly, we can expect problems to find the factorization of the polynomial ${{x}^{8}}-{{x}^{4}}-{{x}^{2}}+1$.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is the difference between Atleast and Atmost in class 9 maths CBSE
