
Factorize the following:
\[{x^8} - {y^8}\]
Answer
615k+ views
Hint:First of all, write the given expression and simplify it by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]. Repeat the same method until we get the least simplification. So, use this method to reach the solution of the given problem.
Complete step-by-step answer:
Given expression is \[{x^8} - {y^8}\] which can be written as
\[ \Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2}\]
We know that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]
By using this formula, we get
\[
\Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\]
Now, simplifying \[{x^4} - {y^4}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\]
Now, simplifying \[{x^2} - {y^2}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left\{ {\left( {x - y} \right)\left( {x + y} \right)} \right\}\left( {{x^2} + {y^2}} \right)} \right] \\
\therefore {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right) \\
\]
Thus, the factorization of \[{x^8} - {y^8}\] is \[\left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\]
Note: We can verify our answer by doing the product of the obtained answer. If we get the same expression as given in the question our answer is correct otherwise wrong. We can use the direct formula \[{x^4} - {y^4} = \left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\] to solve the expre-Assion within no time.
Complete step-by-step answer:
Given expression is \[{x^8} - {y^8}\] which can be written as
\[ \Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2}\]
We know that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]
By using this formula, we get
\[
\Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\]
Now, simplifying \[{x^4} - {y^4}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\]
Now, simplifying \[{x^2} - {y^2}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left\{ {\left( {x - y} \right)\left( {x + y} \right)} \right\}\left( {{x^2} + {y^2}} \right)} \right] \\
\therefore {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right) \\
\]
Thus, the factorization of \[{x^8} - {y^8}\] is \[\left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\]
Note: We can verify our answer by doing the product of the obtained answer. If we get the same expression as given in the question our answer is correct otherwise wrong. We can use the direct formula \[{x^4} - {y^4} = \left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\] to solve the expre-Assion within no time.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

