
Factorize the following:
\[{x^8} - {y^8}\]
Answer
601.5k+ views
Hint:First of all, write the given expression and simplify it by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]. Repeat the same method until we get the least simplification. So, use this method to reach the solution of the given problem.
Complete step-by-step answer:
Given expression is \[{x^8} - {y^8}\] which can be written as
\[ \Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2}\]
We know that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]
By using this formula, we get
\[
\Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\]
Now, simplifying \[{x^4} - {y^4}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\]
Now, simplifying \[{x^2} - {y^2}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left\{ {\left( {x - y} \right)\left( {x + y} \right)} \right\}\left( {{x^2} + {y^2}} \right)} \right] \\
\therefore {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right) \\
\]
Thus, the factorization of \[{x^8} - {y^8}\] is \[\left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\]
Note: We can verify our answer by doing the product of the obtained answer. If we get the same expression as given in the question our answer is correct otherwise wrong. We can use the direct formula \[{x^4} - {y^4} = \left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\] to solve the expre-Assion within no time.
Complete step-by-step answer:
Given expression is \[{x^8} - {y^8}\] which can be written as
\[ \Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2}\]
We know that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]
By using this formula, we get
\[
\Rightarrow {x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\]
Now, simplifying \[{x^4} - {y^4}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right) \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\]
Now, simplifying \[{x^2} - {y^2}\] by using the formula \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right] \\
\Rightarrow {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left[ {\left\{ {\left( {x - y} \right)\left( {x + y} \right)} \right\}\left( {{x^2} + {y^2}} \right)} \right] \\
\therefore {x^8} - {y^8} = \left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right) \\
\]
Thus, the factorization of \[{x^8} - {y^8}\] is \[\left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\]
Note: We can verify our answer by doing the product of the obtained answer. If we get the same expression as given in the question our answer is correct otherwise wrong. We can use the direct formula \[{x^4} - {y^4} = \left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\] to solve the expre-Assion within no time.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

What is pollution? How many types of pollution? Define it

