
Factorize the following:
I.\[{a^4} - {b^4}\]
II.\[{p^4} - 81\]
III.\[{x^4} - {\left( {y + z} \right)^4}\]
IV.\[{x^4} - {\left( {x - z} \right)^4}\]
V.\[{a^4} - 2{a^2}{b^2} + {b^4}\]
Answer
585k+ views
Hint: Use the difference of the square formula to factorize the expressions.
Factorization is the process of finding the factors of the expressions or the numbers. A number or quantity, when multiplied with another number, produces the given number or expression is known as the factor.
In this question, first, arrange the terms of the given expression with the term with the same variables and use the difference of the square formula to factorize the expressions. One of the arithmetic identity used here to solve the question is \[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\]
Complete step-by-step answer:
I.\[{a^4} - {b^4}\]
We can write the expression as
\[{a^4} - {b^4} = {\left( {{a^2}} \right)^2} - {\left( {{b^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{a^4} - {b^4} = {\left( {{a^2}} \right)^2} - {\left( {{b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
\]
In the factor, \[\left( {{a^2} - {b^2}} \right)\]we can again use the difference of the square formula; hence the factor will be
\[
{a^4} - {b^4} = {\left( {{a^2}} \right)^2} - {\left( {{b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
= \left( {{a^2} + {b^2}} \right)\left( {a + b} \right)\left( {a - b} \right) \\
\]
II.\[{p^4} - 81\]
We can write the expression as
\[{p^4} - 81 = {\left( {{p^2}} \right)^2} - {\left( {{3^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{p^4} - 81 = {\left( {{p^2}} \right)^2} - {\left( {{3^2}} \right)^2} \\
= \left( {{p^2} - {3^2}} \right)\left( {{p^2} + {3^2}} \right) \\
\]
In the factor, \[\left( {{p^2} - {3^2}} \right)\]we can again use the difference of the square formula; hence the factor will be
\[
{p^4} - 81 = {\left( {{p^2}} \right)^2} - {\left( {{3^2}} \right)^2} \\
= \left( {{p^2} - {3^2}} \right)\left( {{p^2} + {3^2}} \right) \\
= \left( {{p^2} + 9} \right)\left( {p + 3} \right)\left( {p - 3} \right) \\
\]
III.\[{x^4} - {\left( {y + z} \right)^4}\]
We can write the expression as
\[{x^4} - {\left( {y + z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {y + z} \right)}^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{x^4} - {\left( {y + z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {y + z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {y + z} \right)}^2}} \right)\left( {{x^2} - {{\left( {y + z} \right)}^2}} \right) \\
\]
In the factor, \[\left( {{x^2} - {{\left( {y + z} \right)}^2}} \right)\] we can again use the difference of the square formula; hence the factor will be
\[
{x^4} - {\left( {y + z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {y + z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {y + z} \right)}^2}} \right)\left( {{x^2} - {{\left( {y + z} \right)}^2}} \right) \\
= \left( {{x^2} + {{\left( {y + z} \right)}^2}} \right)\left( {x + \left( {y + z} \right)} \right)\left( {x - \left( {y + z} \right)} \right) \\
\]
IV.\[{x^4} - {\left( {x - z} \right)^4}\]
We can write the expression as
\[{x^4} - {\left( {x - z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {x - z} \right)}^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{x^4} - {\left( {x - z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {x - z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {x - z} \right)}^2}} \right)\left( {{x^2} - {{\left( {x - z} \right)}^2}} \right) \\
\]
In the factor, \[\left( {{x^2} - {{\left( {x - z} \right)}^2}} \right)\] we can again use the difference of the square formula; hence the factor will be
\[
{x^4} - {\left( {x - z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {x - z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {x - z} \right)}^2}} \right)\left( {{x^2} - {{\left( {x - z} \right)}^2}} \right) \\
= \left( {{x^2} + {{\left( {x - z} \right)}^2}} \right)\left( {x + \left( {x - z} \right)} \right)\left( {x - \left( {x - z} \right)} \right) \\
= \left( {{x^2} + {x^2} + {z^2} - 2xz} \right)\left( {2x + z} \right)z \\
= \left( {2{x^2} + {z^2} - 2xz} \right)\left( {2x + z} \right)z \\
\]
V.\[{a^4} - 2{a^2}{b^2} + {b^4}\]
We can write the expression as
\[{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2}} \right)^2} - 2{a^2}{b^2} + {\left( {{b^2}} \right)^2}\]
Now use the square formula\[{\left( {x - y} \right)^2} = {x^2} - 2xy + {y^2}\], where \[{x^2} = {a^2}\]and \[{y^2} = {b^2}\]
\[
{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2}} \right)^2} - 2{a^2}{b^2} + {\left( {{b^2}} \right)^2} \\
= {\left( {{a^2} - {b^2}} \right)^2} \\
\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2} - {b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
\]
Now again, use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression becomes
\[
{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2} - {b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
= \left( {{a^2} + {b^2}} \right)\left( {a + b} \right)\left( {a - b} \right) \\
\]
Note: Students must be careful while using the arithmetic identity as \[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\] as if the expression of x and y gets interchanged then, the factorization will yield a negative sign in front of them.
Factorization is the process of finding the factors of the expressions or the numbers. A number or quantity, when multiplied with another number, produces the given number or expression is known as the factor.
In this question, first, arrange the terms of the given expression with the term with the same variables and use the difference of the square formula to factorize the expressions. One of the arithmetic identity used here to solve the question is \[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\]
Complete step-by-step answer:
I.\[{a^4} - {b^4}\]
We can write the expression as
\[{a^4} - {b^4} = {\left( {{a^2}} \right)^2} - {\left( {{b^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{a^4} - {b^4} = {\left( {{a^2}} \right)^2} - {\left( {{b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
\]
In the factor, \[\left( {{a^2} - {b^2}} \right)\]we can again use the difference of the square formula; hence the factor will be
\[
{a^4} - {b^4} = {\left( {{a^2}} \right)^2} - {\left( {{b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
= \left( {{a^2} + {b^2}} \right)\left( {a + b} \right)\left( {a - b} \right) \\
\]
II.\[{p^4} - 81\]
We can write the expression as
\[{p^4} - 81 = {\left( {{p^2}} \right)^2} - {\left( {{3^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{p^4} - 81 = {\left( {{p^2}} \right)^2} - {\left( {{3^2}} \right)^2} \\
= \left( {{p^2} - {3^2}} \right)\left( {{p^2} + {3^2}} \right) \\
\]
In the factor, \[\left( {{p^2} - {3^2}} \right)\]we can again use the difference of the square formula; hence the factor will be
\[
{p^4} - 81 = {\left( {{p^2}} \right)^2} - {\left( {{3^2}} \right)^2} \\
= \left( {{p^2} - {3^2}} \right)\left( {{p^2} + {3^2}} \right) \\
= \left( {{p^2} + 9} \right)\left( {p + 3} \right)\left( {p - 3} \right) \\
\]
III.\[{x^4} - {\left( {y + z} \right)^4}\]
We can write the expression as
\[{x^4} - {\left( {y + z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {y + z} \right)}^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{x^4} - {\left( {y + z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {y + z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {y + z} \right)}^2}} \right)\left( {{x^2} - {{\left( {y + z} \right)}^2}} \right) \\
\]
In the factor, \[\left( {{x^2} - {{\left( {y + z} \right)}^2}} \right)\] we can again use the difference of the square formula; hence the factor will be
\[
{x^4} - {\left( {y + z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {y + z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {y + z} \right)}^2}} \right)\left( {{x^2} - {{\left( {y + z} \right)}^2}} \right) \\
= \left( {{x^2} + {{\left( {y + z} \right)}^2}} \right)\left( {x + \left( {y + z} \right)} \right)\left( {x - \left( {y + z} \right)} \right) \\
\]
IV.\[{x^4} - {\left( {x - z} \right)^4}\]
We can write the expression as
\[{x^4} - {\left( {x - z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {x - z} \right)}^2}} \right)^2}\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{x^4} - {\left( {x - z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {x - z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {x - z} \right)}^2}} \right)\left( {{x^2} - {{\left( {x - z} \right)}^2}} \right) \\
\]
In the factor, \[\left( {{x^2} - {{\left( {x - z} \right)}^2}} \right)\] we can again use the difference of the square formula; hence the factor will be
\[
{x^4} - {\left( {x - z} \right)^4} = {\left( {{x^2}} \right)^2} - {\left( {{{\left( {x - z} \right)}^2}} \right)^2} \\
= \left( {{x^2} + {{\left( {x - z} \right)}^2}} \right)\left( {{x^2} - {{\left( {x - z} \right)}^2}} \right) \\
= \left( {{x^2} + {{\left( {x - z} \right)}^2}} \right)\left( {x + \left( {x - z} \right)} \right)\left( {x - \left( {x - z} \right)} \right) \\
= \left( {{x^2} + {x^2} + {z^2} - 2xz} \right)\left( {2x + z} \right)z \\
= \left( {2{x^2} + {z^2} - 2xz} \right)\left( {2x + z} \right)z \\
\]
V.\[{a^4} - 2{a^2}{b^2} + {b^4}\]
We can write the expression as
\[{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2}} \right)^2} - 2{a^2}{b^2} + {\left( {{b^2}} \right)^2}\]
Now use the square formula\[{\left( {x - y} \right)^2} = {x^2} - 2xy + {y^2}\], where \[{x^2} = {a^2}\]and \[{y^2} = {b^2}\]
\[
{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2}} \right)^2} - 2{a^2}{b^2} + {\left( {{b^2}} \right)^2} \\
= {\left( {{a^2} - {b^2}} \right)^2} \\
\]
Now use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression will become
\[
{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2} - {b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
\]
Now again, use the difference of the square formula which is given as\[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\], so the expression becomes
\[
{a^4} - 2{a^2}{b^2} + {b^4} = {\left( {{a^2} - {b^2}} \right)^2} \\
= \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) \\
= \left( {{a^2} + {b^2}} \right)\left( {a + b} \right)\left( {a - b} \right) \\
\]
Note: Students must be careful while using the arithmetic identity as \[\left( {{x^2} - {y^2}} \right) = \left( {x + y} \right)\left( {x - y} \right)\] as if the expression of x and y gets interchanged then, the factorization will yield a negative sign in front of them.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


