
Factorize the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$
Answer
521.1k+ views
Hint: Express the terms of the expression in perfect square form. Then use the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ to turn the difference of the two perfect square quantities into two factors.
Complete step-by-step answer:
In the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$, first we separate the perfect square terms as,
$\begin{align}
& 25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}} \\
& =\text{ }{{\left\{ 5\left( a\text{ + 2}b\text{ }-\text{ 3}c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}} \\
\end{align}$
Again,
$\begin{align}
& 9{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right)}^{2}} \\
& =\text{ }{{\left\{ 3\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
\end{align}$
Thus, we obtain the perfect square forms of the two terms in the expression$25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$.
Now, comparing the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ with ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}$, we get,
x = 5a + 10b – 15c and y = 6a – 3b – 3c
Putting these values x = 5a + 10b – 15c and y = 6a – 3b – 3c in the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$, we get,
\[\begin{align}
& {{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}}\text{ }-\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
& =\text{ }\left( 5a\text{ + 10}b\text{ }-\text{ 15c + }6a\text{ }-\text{3}b\text{ }-\ 3c \right)\cdot \left( 5a\text{ + 10}b\text{ }-\text{ 15c }-\text{ }6a\text{ +3}b\,\text{+}\ 3c \right) \\
& =\text{ }\left( 11a\text{ + 7}b\text{ }-\text{ 18}c \right)\cdot \left( -a\text{ + 13}b\text{ }-\text{ 12}c \right) \\
\end{align}\]
Thus, the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ is factored into (11a + 7b – 18c) (- a + 13b – 12c).
Note: Using the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ is much more beneficial than trying to factorize it by middle term breaking because the expression contains more than three variables. Moreover, the quantities are perfect square terms, so using the formula is a natural choice.
Complete step-by-step answer:
In the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$, first we separate the perfect square terms as,
$\begin{align}
& 25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}} \\
& =\text{ }{{\left\{ 5\left( a\text{ + 2}b\text{ }-\text{ 3}c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}} \\
\end{align}$
Again,
$\begin{align}
& 9{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right)}^{2}} \\
& =\text{ }{{\left\{ 3\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
\end{align}$
Thus, we obtain the perfect square forms of the two terms in the expression$25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$.
Now, comparing the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ with ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}$, we get,
x = 5a + 10b – 15c and y = 6a – 3b – 3c
Putting these values x = 5a + 10b – 15c and y = 6a – 3b – 3c in the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$, we get,
\[\begin{align}
& {{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}}\text{ }-\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
& =\text{ }\left( 5a\text{ + 10}b\text{ }-\text{ 15c + }6a\text{ }-\text{3}b\text{ }-\ 3c \right)\cdot \left( 5a\text{ + 10}b\text{ }-\text{ 15c }-\text{ }6a\text{ +3}b\,\text{+}\ 3c \right) \\
& =\text{ }\left( 11a\text{ + 7}b\text{ }-\text{ 18}c \right)\cdot \left( -a\text{ + 13}b\text{ }-\text{ 12}c \right) \\
\end{align}\]
Thus, the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ is factored into (11a + 7b – 18c) (- a + 13b – 12c).
Note: Using the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ is much more beneficial than trying to factorize it by middle term breaking because the expression contains more than three variables. Moreover, the quantities are perfect square terms, so using the formula is a natural choice.
Recently Updated Pages
Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell
