
Factorize the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$
Answer
600.9k+ views
Hint: Express the terms of the expression in perfect square form. Then use the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ to turn the difference of the two perfect square quantities into two factors.
Complete step-by-step answer:
In the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$, first we separate the perfect square terms as,
$\begin{align}
& 25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}} \\
& =\text{ }{{\left\{ 5\left( a\text{ + 2}b\text{ }-\text{ 3}c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}} \\
\end{align}$
Again,
$\begin{align}
& 9{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right)}^{2}} \\
& =\text{ }{{\left\{ 3\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
\end{align}$
Thus, we obtain the perfect square forms of the two terms in the expression$25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$.
Now, comparing the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ with ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}$, we get,
x = 5a + 10b – 15c and y = 6a – 3b – 3c
Putting these values x = 5a + 10b – 15c and y = 6a – 3b – 3c in the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$, we get,
\[\begin{align}
& {{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}}\text{ }-\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
& =\text{ }\left( 5a\text{ + 10}b\text{ }-\text{ 15c + }6a\text{ }-\text{3}b\text{ }-\ 3c \right)\cdot \left( 5a\text{ + 10}b\text{ }-\text{ 15c }-\text{ }6a\text{ +3}b\,\text{+}\ 3c \right) \\
& =\text{ }\left( 11a\text{ + 7}b\text{ }-\text{ 18}c \right)\cdot \left( -a\text{ + 13}b\text{ }-\text{ 12}c \right) \\
\end{align}\]
Thus, the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ is factored into (11a + 7b – 18c) (- a + 13b – 12c).
Note: Using the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ is much more beneficial than trying to factorize it by middle term breaking because the expression contains more than three variables. Moreover, the quantities are perfect square terms, so using the formula is a natural choice.
Complete step-by-step answer:
In the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$, first we separate the perfect square terms as,
$\begin{align}
& 25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}} \\
& =\text{ }{{\left\{ 5\left( a\text{ + 2}b\text{ }-\text{ 3}c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}} \\
\end{align}$
Again,
$\begin{align}
& 9{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right)}^{2}} \\
& =\text{ }{{\left\{ 3\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
\end{align}$
Thus, we obtain the perfect square forms of the two terms in the expression$25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$.
Now, comparing the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ with ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}$, we get,
x = 5a + 10b – 15c and y = 6a – 3b – 3c
Putting these values x = 5a + 10b – 15c and y = 6a – 3b – 3c in the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$, we get,
\[\begin{align}
& {{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}}\text{ }-\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
& =\text{ }\left( 5a\text{ + 10}b\text{ }-\text{ 15c + }6a\text{ }-\text{3}b\text{ }-\ 3c \right)\cdot \left( 5a\text{ + 10}b\text{ }-\text{ 15c }-\text{ }6a\text{ +3}b\,\text{+}\ 3c \right) \\
& =\text{ }\left( 11a\text{ + 7}b\text{ }-\text{ 18}c \right)\cdot \left( -a\text{ + 13}b\text{ }-\text{ 12}c \right) \\
\end{align}\]
Thus, the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ is factored into (11a + 7b – 18c) (- a + 13b – 12c).
Note: Using the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ is much more beneficial than trying to factorize it by middle term breaking because the expression contains more than three variables. Moreover, the quantities are perfect square terms, so using the formula is a natural choice.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Why is there a time difference of about 5 hours between class 10 social science CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

