
Factorize the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$
Answer
617.4k+ views
Hint: Express the terms of the expression in perfect square form. Then use the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ to turn the difference of the two perfect square quantities into two factors.
Complete step-by-step answer:
In the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$, first we separate the perfect square terms as,
$\begin{align}
& 25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}} \\
& =\text{ }{{\left\{ 5\left( a\text{ + 2}b\text{ }-\text{ 3}c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}} \\
\end{align}$
Again,
$\begin{align}
& 9{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right)}^{2}} \\
& =\text{ }{{\left\{ 3\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
\end{align}$
Thus, we obtain the perfect square forms of the two terms in the expression$25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$.
Now, comparing the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ with ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}$, we get,
x = 5a + 10b – 15c and y = 6a – 3b – 3c
Putting these values x = 5a + 10b – 15c and y = 6a – 3b – 3c in the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$, we get,
\[\begin{align}
& {{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}}\text{ }-\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
& =\text{ }\left( 5a\text{ + 10}b\text{ }-\text{ 15c + }6a\text{ }-\text{3}b\text{ }-\ 3c \right)\cdot \left( 5a\text{ + 10}b\text{ }-\text{ 15c }-\text{ }6a\text{ +3}b\,\text{+}\ 3c \right) \\
& =\text{ }\left( 11a\text{ + 7}b\text{ }-\text{ 18}c \right)\cdot \left( -a\text{ + 13}b\text{ }-\text{ 12}c \right) \\
\end{align}\]
Thus, the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ is factored into (11a + 7b – 18c) (- a + 13b – 12c).
Note: Using the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ is much more beneficial than trying to factorize it by middle term breaking because the expression contains more than three variables. Moreover, the quantities are perfect square terms, so using the formula is a natural choice.
Complete step-by-step answer:
In the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$, first we separate the perfect square terms as,
$\begin{align}
& 25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}} \\
& =\text{ }{{\left\{ 5\left( a\text{ + 2}b\text{ }-\text{ 3}c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}} \\
\end{align}$
Again,
$\begin{align}
& 9{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right)}^{2}} \\
& =\text{ }{{\left\{ 3\left( 2a\text{ }-\text{ }b\text{ }-\text{ }c \right) \right\}}^{2}} \\
& =\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
\end{align}$
Thus, we obtain the perfect square forms of the two terms in the expression$25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$.
Now, comparing the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ with ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}$, we get,
x = 5a + 10b – 15c and y = 6a – 3b – 3c
Putting these values x = 5a + 10b – 15c and y = 6a – 3b – 3c in the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$, we get,
\[\begin{align}
& {{\left( 5a\text{ + 10}b\text{ }-\text{ 15c} \right)}^{2}}\text{ }-\text{ }{{\left( 6a\text{ }-\text{3}b\text{ }-\ 3c \right)}^{2}} \\
& =\text{ }\left( 5a\text{ + 10}b\text{ }-\text{ 15c + }6a\text{ }-\text{3}b\text{ }-\ 3c \right)\cdot \left( 5a\text{ + 10}b\text{ }-\text{ 15c }-\text{ }6a\text{ +3}b\,\text{+}\ 3c \right) \\
& =\text{ }\left( 11a\text{ + 7}b\text{ }-\text{ 18}c \right)\cdot \left( -a\text{ + 13}b\text{ }-\text{ 12}c \right) \\
\end{align}\]
Thus, the expression $25{{\left( a\text{ + 2}b\text{ }-\text{ 3}c \right)}^{2}}\text{ }-\text{ 9}{{\left( 2a\text{ }-\text{ }b\text{ }-\text{ c} \right)}^{2}}$ is factored into (11a + 7b – 18c) (- a + 13b – 12c).
Note: Using the formula ${{x}^{2}}\text{ }-\text{ }{{y}^{2}}\text{ = }\left( x\text{ + }y \right)\left( x\text{ }-\text{ }y \right)$ is much more beneficial than trying to factorize it by middle term breaking because the expression contains more than three variables. Moreover, the quantities are perfect square terms, so using the formula is a natural choice.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

