
Factorize the equation given below:
${x^3} + 3{x^2} - x - 3$
Answer
598.5k+ views
Hint: In order to solve this question, we will use basic identities of algebra such as ${a^2} - {b^2} = (a + b)(a - b)$ . First we will take out the common terms and try to see if any identity is applicable, we will use that identity and simplify it further.
Complete step-by-step answer:
Let $f(x) = {x^3} + 3{x^2} - x - 3$
For simplifying a given function of x, we will proceed further by taking common terms.
So, $f(x) = {x^2}(x + 3) - 1(x + 3)$
Now, $(x + 3)$ is common in both the term, so taking out $(x + 3)$
$f(x) = ({x^2} - 1)(x + 3)$
We know that $\left[ {{a^2} - {b^2} = (a + b)(a - b)} \right]$
By using the given identity, we get
$f(x) = (x + 1)(x - 1)(x + 3)$
Hence, the factors of ${x^3} + 3{x^2} - x - 3$ are $(x + 1),(x - 1)\& (x + 3)$
Note: In order to solve these types of questions, remember the basic formulas and properties of algebra. There are four basic properties of algebra such as commutative, associative, distributive and identity. You should be familiar with each of these. It is especially important to understand these properties in order to answer questions related to algebraic equations.
Complete step-by-step answer:
Let $f(x) = {x^3} + 3{x^2} - x - 3$
For simplifying a given function of x, we will proceed further by taking common terms.
So, $f(x) = {x^2}(x + 3) - 1(x + 3)$
Now, $(x + 3)$ is common in both the term, so taking out $(x + 3)$
$f(x) = ({x^2} - 1)(x + 3)$
We know that $\left[ {{a^2} - {b^2} = (a + b)(a - b)} \right]$
By using the given identity, we get
$f(x) = (x + 1)(x - 1)(x + 3)$
Hence, the factors of ${x^3} + 3{x^2} - x - 3$ are $(x + 1),(x - 1)\& (x + 3)$
Note: In order to solve these types of questions, remember the basic formulas and properties of algebra. There are four basic properties of algebra such as commutative, associative, distributive and identity. You should be familiar with each of these. It is especially important to understand these properties in order to answer questions related to algebraic equations.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

