
Factorize the equation given below:
${x^3} + 3{x^2} - x - 3$
Answer
616.8k+ views
Hint: In order to solve this question, we will use basic identities of algebra such as ${a^2} - {b^2} = (a + b)(a - b)$ . First we will take out the common terms and try to see if any identity is applicable, we will use that identity and simplify it further.
Complete step-by-step answer:
Let $f(x) = {x^3} + 3{x^2} - x - 3$
For simplifying a given function of x, we will proceed further by taking common terms.
So, $f(x) = {x^2}(x + 3) - 1(x + 3)$
Now, $(x + 3)$ is common in both the term, so taking out $(x + 3)$
$f(x) = ({x^2} - 1)(x + 3)$
We know that $\left[ {{a^2} - {b^2} = (a + b)(a - b)} \right]$
By using the given identity, we get
$f(x) = (x + 1)(x - 1)(x + 3)$
Hence, the factors of ${x^3} + 3{x^2} - x - 3$ are $(x + 1),(x - 1)\& (x + 3)$
Note: In order to solve these types of questions, remember the basic formulas and properties of algebra. There are four basic properties of algebra such as commutative, associative, distributive and identity. You should be familiar with each of these. It is especially important to understand these properties in order to answer questions related to algebraic equations.
Complete step-by-step answer:
Let $f(x) = {x^3} + 3{x^2} - x - 3$
For simplifying a given function of x, we will proceed further by taking common terms.
So, $f(x) = {x^2}(x + 3) - 1(x + 3)$
Now, $(x + 3)$ is common in both the term, so taking out $(x + 3)$
$f(x) = ({x^2} - 1)(x + 3)$
We know that $\left[ {{a^2} - {b^2} = (a + b)(a - b)} \right]$
By using the given identity, we get
$f(x) = (x + 1)(x - 1)(x + 3)$
Hence, the factors of ${x^3} + 3{x^2} - x - 3$ are $(x + 1),(x - 1)\& (x + 3)$
Note: In order to solve these types of questions, remember the basic formulas and properties of algebra. There are four basic properties of algebra such as commutative, associative, distributive and identity. You should be familiar with each of these. It is especially important to understand these properties in order to answer questions related to algebraic equations.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

