
Factorize each of the following:
(i) \[8{a^3} + {b^3} + 12{a^2b} + 6a{b^2}\]
(ii) \[8{a^3} - {b^3} - 12{a^2}b + 6a{b^2}\]
(iii) \[27 - 125{a^3} - 135a + 225{a^2}\]
(iv) \[64{a^3} - 27{b^3} - 144{a^2}b + 108a{b^2}\]
(v) $27{p^3} - \dfrac{1}{{216}} - \dfrac{9}{2}{p^2} + \dfrac{1}{4}p$
Answer
614.1k+ views
Hint:To solve this question use the Basic algebraic identities and formulas i.e ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)$ and ${\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)$.Compare these standard formulas with given equations and get the answer.
Complete step-by-step answer:
Take the first equation:
1. \[8{a^3} + {b^3} + 12{a^2b} + 6a{b^2}\]
this can be written as:
$ = {\left( {2a} \right)^3} + {b^3} + 6ab\left( {2a + b} \right)$....taking as equation $(1)$
Comparing equation $(1)$ with ${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$
therefore equation will be:
$
= {\left( {2a + b} \right)^3} \\
= \left( {2a + b} \right)\left( {2a + b} \right)\left( {2a + b} \right) \\
$
Taking the second equation:
2. \[8{a^3} - {b^3} - 12{a^2}b + 6a{b^2}\]
this can be written as:
$ = {\left( {2a} \right)^3} - {b^3} - 6ab\left( {2a - b} \right)$....taking as equation $(2)$
Comparing equation $(2)$ with ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$
therefore equation will be:
$
= {\left( {2a - b} \right)^3} \\
= \left( {2a - b} \right)\left( {2a - b} \right)\left( {2a - b} \right) \\
$
Taking equation third:
3. \[27 - 125{a^3} - 135a + 225{a^2}\]
this can be written as:
\[ = {\left( 3 \right)^3} - {\left( {5a} \right)^3} - 45a\left( {3 - 5a} \right)\]....taking as equation $(3)$
Comparing equation $(3)$ with ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$ equation will be:
$
= {\left( {3 - 5a} \right)^3} \\
= \left( {3 - 5a} \right)\left( {3 - 5a} \right)\left( {3 - 5a} \right) \\
$
Taking equation fourth
4. \[64{a^3} - 27{b^3} - 144{a^2}b + 108a{b^2}\]
this can be written as
$ = {\left( {4a} \right)^3} - {\left( {3b} \right)^3} - 36ab\left( {4a - 3b} \right)$...taking as equation $(4)$
Comparing equation $(4)$ with ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$ equation will be:
$
= {\left( {4a - 3b} \right)^3} \\
= \left( {4a - 3b} \right)\left( {4a - 3b} \right)\left( {4a - 3b} \right) \\
$
Taking equation fifth:
4. $27{p^3} - \dfrac{1}{{216}} - \dfrac{9}{2}{p^2} + \dfrac{1}{4}p$
this can be written as:
$ = \left( {3{p^3}} \right) - {\left( {\dfrac{1}{6}} \right)^3} - 3 \times 3p \times \dfrac{1}{6}\left( {3p - \dfrac{1}{6}} \right)$...taking as equation $(5)$
Comparing equation $(5)$ ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$ equation will be:
$
= {\left( {3p - \dfrac{1}{6}} \right)^3} \\
= \left( {3p - \dfrac{1}{6}} \right)\left( {3p - \dfrac{1}{6}} \right)\left( {3p - \dfrac{1}{6}} \right) \\
$
Hence we got the desired results.
Note:- In this question all the given five polynomial equations are in the cubic form hence we factorized them using algebraic cubic formula and after simplification got the desired results for each of them.Students should remember Basic algebraic identities of quadratic and cubic forms for solving these types of questions.
Complete step-by-step answer:
Take the first equation:
1. \[8{a^3} + {b^3} + 12{a^2b} + 6a{b^2}\]
this can be written as:
$ = {\left( {2a} \right)^3} + {b^3} + 6ab\left( {2a + b} \right)$....taking as equation $(1)$
Comparing equation $(1)$ with ${a^3} + {b^3} + 3ab\left( {a + b} \right) = {\left( {a + b} \right)^3}$
therefore equation will be:
$
= {\left( {2a + b} \right)^3} \\
= \left( {2a + b} \right)\left( {2a + b} \right)\left( {2a + b} \right) \\
$
Taking the second equation:
2. \[8{a^3} - {b^3} - 12{a^2}b + 6a{b^2}\]
this can be written as:
$ = {\left( {2a} \right)^3} - {b^3} - 6ab\left( {2a - b} \right)$....taking as equation $(2)$
Comparing equation $(2)$ with ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$
therefore equation will be:
$
= {\left( {2a - b} \right)^3} \\
= \left( {2a - b} \right)\left( {2a - b} \right)\left( {2a - b} \right) \\
$
Taking equation third:
3. \[27 - 125{a^3} - 135a + 225{a^2}\]
this can be written as:
\[ = {\left( 3 \right)^3} - {\left( {5a} \right)^3} - 45a\left( {3 - 5a} \right)\]....taking as equation $(3)$
Comparing equation $(3)$ with ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$ equation will be:
$
= {\left( {3 - 5a} \right)^3} \\
= \left( {3 - 5a} \right)\left( {3 - 5a} \right)\left( {3 - 5a} \right) \\
$
Taking equation fourth
4. \[64{a^3} - 27{b^3} - 144{a^2}b + 108a{b^2}\]
this can be written as
$ = {\left( {4a} \right)^3} - {\left( {3b} \right)^3} - 36ab\left( {4a - 3b} \right)$...taking as equation $(4)$
Comparing equation $(4)$ with ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$ equation will be:
$
= {\left( {4a - 3b} \right)^3} \\
= \left( {4a - 3b} \right)\left( {4a - 3b} \right)\left( {4a - 3b} \right) \\
$
Taking equation fifth:
4. $27{p^3} - \dfrac{1}{{216}} - \dfrac{9}{2}{p^2} + \dfrac{1}{4}p$
this can be written as:
$ = \left( {3{p^3}} \right) - {\left( {\dfrac{1}{6}} \right)^3} - 3 \times 3p \times \dfrac{1}{6}\left( {3p - \dfrac{1}{6}} \right)$...taking as equation $(5)$
Comparing equation $(5)$ ${a^3} - {b^3} - 3ab\left( {a - b} \right) = {\left( {a - b} \right)^3}$ equation will be:
$
= {\left( {3p - \dfrac{1}{6}} \right)^3} \\
= \left( {3p - \dfrac{1}{6}} \right)\left( {3p - \dfrac{1}{6}} \right)\left( {3p - \dfrac{1}{6}} \right) \\
$
Hence we got the desired results.
Note:- In this question all the given five polynomial equations are in the cubic form hence we factorized them using algebraic cubic formula and after simplification got the desired results for each of them.Students should remember Basic algebraic identities of quadratic and cubic forms for solving these types of questions.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

