
Factorize ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$.
Answer
570.3k+ views
Hint: We have the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$, so we will convert the given equation in terms of ${{x}^{3}}$, ${{y}^{3}}$, ${{z}^{3}}$ and use the above formula to factorize the given equation.
Complete step by step answer:
Given that, ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$
Let us take the substitution $a=x$, then the above equation is modified as ${{x}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18\left( x \right)bc$.
Now we have the term $27{{b}^{3}}$, we can write $27$ as ${{3}^{3}}$, then $27{{b}^{3}}={{3}^{3}}{{b}^{3}}={{\left( 3b \right)}^{3}}$.
Let us take the substitution $3b=y$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{\left( 3b \right)}^{3}}+8{{c}^{3}}-\dfrac{18}{3}\left( x \right)\left( 3b \right)c \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+8{{c}^{3}}-6\left( x \right)\left( y \right)c \\
\end{align}$
Now we have the term $8{{c}^{3}}$, we can write $8$ as ${{2}^{3}}$, then $8{{c}^{3}}={{2}^{3}}{{c}^{3}}={{\left( 2c \right)}^{3}}$.
Let us take the substitution $2c=z$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{\left( 2c \right)}^{3}}-\dfrac{6}{2}\left( x \right)\left( y \right)\left( 2c \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3\left( x \right)\left( y \right)\left( z \right) \\
\end{align}$
But we know that ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$.
$\therefore {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$
Where $x=a$, $y=3b$, $z=2c$. Substituting these values in the above equation, then we will get
$\begin{align}
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{\left( a \right)}^{2}}+{{\left( 3b \right)}^{2}}+{{\left( 2c \right)}^{2}}-\left( a \right)\left( 3b \right)-\left( 3b \right)\left( 2c \right)-\left( 2c \right)\left( a \right) \right) \\
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
\end{align}$
$\therefore $ Factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ are $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
Note: We can also verify that $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ are the factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ by multiplying $a+3b+2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
First we will multiply $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ after that we will multiply $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and finally we will multiply $2c$ with${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and add them to verify.
Multiplying $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+9a{{b}^{2}}+4a{{c}^{2}}-3{{a}^{2}}b-6abc-2{{a}^{2}}c \\
& \Rightarrow a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \\
\end{align}$
Multiplying $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=3{{a}^{2}}b+27{{b}^{3}}+12b{{c}^{2}}-9a{{b}^{2}}-18{{b}^{2}}c-6abc \\
& \Rightarrow 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \\
\end{align}$
Multiplying $2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=2{{a}^{2}}c+18c{{b}^{2}}+8{{c}^{3}}-6abc-12b{{c}^{2}}-4a{{c}^{2}} \\
& \Rightarrow 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \\
\end{align}$
Now adding all the above terms, then we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \right)+\left( 27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \right)+\left( 8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}} \right)+\left( -3{{a}^{2}}b+3{{a}^{2}}b \right)+\left( -2{{a}^{2}}c+2{{a}^{2}}c \right)+\left( 9a{{b}^{2}}-9a{{b}^{2}} \right)+\left( 4a{{c}^{2}}-4a{{c}^{2}} \right)+\left( -18{{b}^{2}}c+18c{{b}^{2}} \right)+\left( 2b{{c}^{2}}-12b{{c}^{2}} \right)+\left( -6abc-6abc-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc \\
\end{align}$
Hence Verified.
Complete step by step answer:
Given that, ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$
Let us take the substitution $a=x$, then the above equation is modified as ${{x}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18\left( x \right)bc$.
Now we have the term $27{{b}^{3}}$, we can write $27$ as ${{3}^{3}}$, then $27{{b}^{3}}={{3}^{3}}{{b}^{3}}={{\left( 3b \right)}^{3}}$.
Let us take the substitution $3b=y$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{\left( 3b \right)}^{3}}+8{{c}^{3}}-\dfrac{18}{3}\left( x \right)\left( 3b \right)c \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+8{{c}^{3}}-6\left( x \right)\left( y \right)c \\
\end{align}$
Now we have the term $8{{c}^{3}}$, we can write $8$ as ${{2}^{3}}$, then $8{{c}^{3}}={{2}^{3}}{{c}^{3}}={{\left( 2c \right)}^{3}}$.
Let us take the substitution $2c=z$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{\left( 2c \right)}^{3}}-\dfrac{6}{2}\left( x \right)\left( y \right)\left( 2c \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3\left( x \right)\left( y \right)\left( z \right) \\
\end{align}$
But we know that ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$.
$\therefore {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$
Where $x=a$, $y=3b$, $z=2c$. Substituting these values in the above equation, then we will get
$\begin{align}
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{\left( a \right)}^{2}}+{{\left( 3b \right)}^{2}}+{{\left( 2c \right)}^{2}}-\left( a \right)\left( 3b \right)-\left( 3b \right)\left( 2c \right)-\left( 2c \right)\left( a \right) \right) \\
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
\end{align}$
$\therefore $ Factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ are $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
Note: We can also verify that $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ are the factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ by multiplying $a+3b+2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
First we will multiply $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ after that we will multiply $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and finally we will multiply $2c$ with${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and add them to verify.
Multiplying $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+9a{{b}^{2}}+4a{{c}^{2}}-3{{a}^{2}}b-6abc-2{{a}^{2}}c \\
& \Rightarrow a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \\
\end{align}$
Multiplying $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=3{{a}^{2}}b+27{{b}^{3}}+12b{{c}^{2}}-9a{{b}^{2}}-18{{b}^{2}}c-6abc \\
& \Rightarrow 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \\
\end{align}$
Multiplying $2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=2{{a}^{2}}c+18c{{b}^{2}}+8{{c}^{3}}-6abc-12b{{c}^{2}}-4a{{c}^{2}} \\
& \Rightarrow 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \\
\end{align}$
Now adding all the above terms, then we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \right)+\left( 27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \right)+\left( 8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}} \right)+\left( -3{{a}^{2}}b+3{{a}^{2}}b \right)+\left( -2{{a}^{2}}c+2{{a}^{2}}c \right)+\left( 9a{{b}^{2}}-9a{{b}^{2}} \right)+\left( 4a{{c}^{2}}-4a{{c}^{2}} \right)+\left( -18{{b}^{2}}c+18c{{b}^{2}} \right)+\left( 2b{{c}^{2}}-12b{{c}^{2}} \right)+\left( -6abc-6abc-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc \\
\end{align}$
Hence Verified.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

