
Factorize ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$.
Answer
556.5k+ views
Hint: We have the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$, so we will convert the given equation in terms of ${{x}^{3}}$, ${{y}^{3}}$, ${{z}^{3}}$ and use the above formula to factorize the given equation.
Complete step by step answer:
Given that, ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$
Let us take the substitution $a=x$, then the above equation is modified as ${{x}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18\left( x \right)bc$.
Now we have the term $27{{b}^{3}}$, we can write $27$ as ${{3}^{3}}$, then $27{{b}^{3}}={{3}^{3}}{{b}^{3}}={{\left( 3b \right)}^{3}}$.
Let us take the substitution $3b=y$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{\left( 3b \right)}^{3}}+8{{c}^{3}}-\dfrac{18}{3}\left( x \right)\left( 3b \right)c \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+8{{c}^{3}}-6\left( x \right)\left( y \right)c \\
\end{align}$
Now we have the term $8{{c}^{3}}$, we can write $8$ as ${{2}^{3}}$, then $8{{c}^{3}}={{2}^{3}}{{c}^{3}}={{\left( 2c \right)}^{3}}$.
Let us take the substitution $2c=z$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{\left( 2c \right)}^{3}}-\dfrac{6}{2}\left( x \right)\left( y \right)\left( 2c \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3\left( x \right)\left( y \right)\left( z \right) \\
\end{align}$
But we know that ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$.
$\therefore {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$
Where $x=a$, $y=3b$, $z=2c$. Substituting these values in the above equation, then we will get
$\begin{align}
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{\left( a \right)}^{2}}+{{\left( 3b \right)}^{2}}+{{\left( 2c \right)}^{2}}-\left( a \right)\left( 3b \right)-\left( 3b \right)\left( 2c \right)-\left( 2c \right)\left( a \right) \right) \\
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
\end{align}$
$\therefore $ Factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ are $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
Note: We can also verify that $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ are the factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ by multiplying $a+3b+2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
First we will multiply $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ after that we will multiply $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and finally we will multiply $2c$ with${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and add them to verify.
Multiplying $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+9a{{b}^{2}}+4a{{c}^{2}}-3{{a}^{2}}b-6abc-2{{a}^{2}}c \\
& \Rightarrow a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \\
\end{align}$
Multiplying $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=3{{a}^{2}}b+27{{b}^{3}}+12b{{c}^{2}}-9a{{b}^{2}}-18{{b}^{2}}c-6abc \\
& \Rightarrow 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \\
\end{align}$
Multiplying $2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=2{{a}^{2}}c+18c{{b}^{2}}+8{{c}^{3}}-6abc-12b{{c}^{2}}-4a{{c}^{2}} \\
& \Rightarrow 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \\
\end{align}$
Now adding all the above terms, then we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \right)+\left( 27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \right)+\left( 8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}} \right)+\left( -3{{a}^{2}}b+3{{a}^{2}}b \right)+\left( -2{{a}^{2}}c+2{{a}^{2}}c \right)+\left( 9a{{b}^{2}}-9a{{b}^{2}} \right)+\left( 4a{{c}^{2}}-4a{{c}^{2}} \right)+\left( -18{{b}^{2}}c+18c{{b}^{2}} \right)+\left( 2b{{c}^{2}}-12b{{c}^{2}} \right)+\left( -6abc-6abc-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc \\
\end{align}$
Hence Verified.
Complete step by step answer:
Given that, ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$
Let us take the substitution $a=x$, then the above equation is modified as ${{x}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18\left( x \right)bc$.
Now we have the term $27{{b}^{3}}$, we can write $27$ as ${{3}^{3}}$, then $27{{b}^{3}}={{3}^{3}}{{b}^{3}}={{\left( 3b \right)}^{3}}$.
Let us take the substitution $3b=y$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{\left( 3b \right)}^{3}}+8{{c}^{3}}-\dfrac{18}{3}\left( x \right)\left( 3b \right)c \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+8{{c}^{3}}-6\left( x \right)\left( y \right)c \\
\end{align}$
Now we have the term $8{{c}^{3}}$, we can write $8$ as ${{2}^{3}}$, then $8{{c}^{3}}={{2}^{3}}{{c}^{3}}={{\left( 2c \right)}^{3}}$.
Let us take the substitution $2c=z$, then the above equation is modified as
$\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{\left( 2c \right)}^{3}}-\dfrac{6}{2}\left( x \right)\left( y \right)\left( 2c \right) \\
& \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3\left( x \right)\left( y \right)\left( z \right) \\
\end{align}$
But we know that ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$.
$\therefore {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)$
Where $x=a$, $y=3b$, $z=2c$. Substituting these values in the above equation, then we will get
$\begin{align}
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{\left( a \right)}^{2}}+{{\left( 3b \right)}^{2}}+{{\left( 2c \right)}^{2}}-\left( a \right)\left( 3b \right)-\left( 3b \right)\left( 2c \right)-\left( 2c \right)\left( a \right) \right) \\
& \Rightarrow {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc=\left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
\end{align}$
$\therefore $ Factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ are $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
Note: We can also verify that $a+3b+2c$, ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ are the factors of ${{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc$ by multiplying $a+3b+2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$.
First we will multiply $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ after that we will multiply $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and finally we will multiply $2c$ with${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$ and add them to verify.
Multiplying $a$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+9a{{b}^{2}}+4a{{c}^{2}}-3{{a}^{2}}b-6abc-2{{a}^{2}}c \\
& \Rightarrow a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \\
\end{align}$
Multiplying $3b$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=3{{a}^{2}}b+27{{b}^{3}}+12b{{c}^{2}}-9a{{b}^{2}}-18{{b}^{2}}c-6abc \\
& \Rightarrow 3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \\
\end{align}$
Multiplying $2c$ with ${{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac$, we will get
$\begin{align}
& 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=2{{a}^{2}}c+18c{{b}^{2}}+8{{c}^{3}}-6abc-12b{{c}^{2}}-4a{{c}^{2}} \\
& \Rightarrow 2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)=8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \\
\end{align}$
Now adding all the above terms, then we will get
$\begin{align}
& a\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+3b\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)+2c\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}-3{{a}^{2}}b-2{{a}^{2}}c+9a{{b}^{2}}+4a{{c}^{2}}-6abc \right)+\left( 27{{b}^{3}}+3{{a}^{2}}b-9a{{b}^{2}}-18{{b}^{2}}c+12b{{c}^{2}}-6abc \right)+\left( 8{{c}^{3}}+2{{a}^{2}}c+18c{{b}^{2}}-12b{{c}^{2}}-4a{{c}^{2}}-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right) \\
& =\left( {{a}^{3}}+27{{b}^{3}}+8{{c}^{3}} \right)+\left( -3{{a}^{2}}b+3{{a}^{2}}b \right)+\left( -2{{a}^{2}}c+2{{a}^{2}}c \right)+\left( 9a{{b}^{2}}-9a{{b}^{2}} \right)+\left( 4a{{c}^{2}}-4a{{c}^{2}} \right)+\left( -18{{b}^{2}}c+18c{{b}^{2}} \right)+\left( 2b{{c}^{2}}-12b{{c}^{2}} \right)+\left( -6abc-6abc-6abc \right) \\
& \Rightarrow \left( a+3b+2c \right)\left( {{a}^{2}}+9{{b}^{2}}+4{{c}^{2}}-3ab-6bc-2ac \right)={{a}^{3}}+27{{b}^{3}}+8{{c}^{3}}-18abc \\
\end{align}$
Hence Verified.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

