
Factorize
(1) $ {x^2} + 9x + 18 $
(2) $ {x^2} - 10x + 9 $
(3) $ {y^2} + 24y + 144 $
(4) $ 5{y^2} + 5y - 10 $
(5) $ {p^2} - 2p - 35 $
(6) $ {p^2} - 7p - 44 $
(7) $ {m^2} - 23m + 120 $
(8) $ {m^2} - 25m + 100 $
(9) $ 3{x^2} + 14x + 15 $
(10) $ 2{x^2} + x - 45 $
(11) $ 20{x^2} - 26x + 8 $ (12) $ 44{x^2} - x - 3 $
Answer
559.5k+ views
Hint: Every quadratic polynomial will have two factors. As the above 12 polynomials are quadratic, each polynomial will have two factors. First step is to divide the middle term into two according to the product of coefficients of first and third terms.
Complete step-by-step answer:
We are given to factorize quadratic polynomials. Factorization of a polynomial is the process of writing the polynomial in terms of its factors.
(1) $ {x^2} + 9x + 18 $
$ {x^2} + 9x + 18 $ can also be written as
$
{x^2} + 3x + 6x + 18 \\
\Rightarrow x\left( {x + 3} \right) + 6\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {x + 6} \right) \;
$
Therefore, the factors of $ {x^2} + 9x + 18 $ are $ \left( {x + 3} \right),\left( {x + 6} \right) $
(2) $ {x^2} - 10x + 9 $
$ {x^2} - 10x + 9 $ can also be written as
$
{x^2} - 9x - x + 9 \\
\Rightarrow x\left( {x - 9} \right) - 1\left( {x - 9} \right) \\
\Rightarrow \left( {x - 9} \right)\left( {x - 1} \right) \;
$
Therefore, the factors of $ {x^2} - 10x + 9 $ are $ \left( {x - 9} \right),\left( {x - 1} \right) $
(3) $ {y^2} + 24y + 144 $
$ {y^2} + 24y + 144 $ can also be written as
$
{y^2} + 12y + 12y + 144 \\
\Rightarrow y\left( {y + 12} \right) + 12\left( {y + 12} \right) \\
\Rightarrow \left( {y + 12} \right)\left( {y + 12} \right) = {\left( {y + 12} \right)^2} \;
$
$ {y^2} + 24y + 144 $ is $ {\left( {y + 12} \right)^2} $
(4) $ 5{y^2} + 5y - 10 $
$ 5{y^2} + 5y - 10 $ can also be written as
$
5{y^2} + 10y - 5y - 10 \\
\Rightarrow 5y\left( {y + 2} \right) - 5\left( {y + 2} \right) \\
\Rightarrow \left( {y + 2} \right)\left( {5y - 5} \right) \;
$
The factors of $ 5{y^2} + 5y - 10 $ are \[\left( {y + 2} \right),\left( {5y - 5} \right)\]
(5) $ {p^2} - 2p - 35 $
$ {p^2} - 2p - 35 $ can also be written as
$
{p^2} - 7p + 5p - 35 \\
\Rightarrow p\left( {p - 7} \right) + 5\left( {p - 7} \right) \\
\Rightarrow \left( {p - 7} \right)\left( {p + 5} \right) \;
$
Therefore, the factors of $ {p^2} - 2p - 35 $ are $ \left( {p - 7} \right),\left( {p + 5} \right) $
(6) $ {p^2} - 7p - 44 $
$ {p^2} - 7p - 44 $ can also be written as
$
{p^2} - 11p + 4p - 44 \\
\Rightarrow p\left( {p - 11} \right) + 4\left( {p - 11} \right) \\
\Rightarrow \left( {p - 11} \right)\left( {p + 4} \right) \;
$
Therefore, the factors of $ {p^2} - 7p - 44 $ are $ \left( {p - 11} \right),\left( {p + 4} \right) $
(7) $ {m^2} - 23m + 120 $
$ {m^2} - 23m + 120 $ can also be written as
$
{m^2} - 15m - 8m + 120 \\
\Rightarrow m\left( {m - 15} \right) - 8\left( {m - 15} \right) \\
\Rightarrow \left( {m - 15} \right)\left( {m - 8} \right) \;
$
The factors of $ {m^2} - 23m + 120 $ are $ \left( {m - 15} \right),\left( {m - 8} \right) $
(8) $ {m^2} - 25m + 100 $
$ {m^2} - 25m + 100 $ can also be written as
$
{m^2} - 20m - 5m + 100 \\
\Rightarrow m\left( {m - 20} \right) - 5\left( {m - 20} \right) \\
\Rightarrow \left( {m - 20} \right)\left( {m - 5} \right) \;
$
The factors of $ {m^2} - 25m + 100 $ are $ \left( {m - 20} \right),\left( {m - 5} \right) $
(9) $ 3{x^2} + 14x + 15 $
$ 3{x^2} + 14x + 15 $ can also be written as
$
3{x^2} + 9x + 5x + 15 \\
\Rightarrow 3x\left( {x + 3} \right) + 5\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {3x + 5} \right) \;
$
The factors of $ 3{x^2} + 14x + 15 $ are $ \left( {x + 3} \right),\left( {3x + 5} \right) $
(10) $ 2{x^2} + x - 45 $
$ 2{x^2} + x - 45 $ can also be written as
$
2{x^2} + 10x - 9x - 45 \\
\Rightarrow 2x\left( {x + 5} \right) - 9\left( {x + 5} \right) \\
\Rightarrow \left( {x + 5} \right)\left( {2x - 9} \right) \;
$
The factors of $ 2{x^2} + x - 45 $ are $ \left( {x + 5} \right),\left( {2x - 9} \right) $
(11) $ 20{x^2} - 26x + 8 $
$ 20{x^2} - 26x + 8 $ can also be written as
$
20{x^2} - 10x - 16x + 8 \\
\Rightarrow 10x\left( {2x - 1} \right) - 8\left( {2x - 1} \right) \\
\Rightarrow \left( {2x - 1} \right)\left( {10x - 8} \right) \;
$
The factors of $ 20{x^2} - 26x + 8 $ are $ \left( {2x - 1} \right),\left( {10x - 8} \right) $
(12) $ 44{x^2} - x - 3 $
$ 44{x^2} - x - 3 $ can also be written as
$
44{x^2} - 11x + 12x - 3 \\
\Rightarrow 11x\left( {4x - 1} \right) + 3\left( {4x - 1} \right) \\
\Rightarrow \left( {4x - 1} \right)\left( {11x + 3} \right) \;
$
The factors of $ 44{x^2} - x - 3 $ are $ \left( {4x - 1} \right),\left( {11x + 3} \right) $
Note: When we are factoring a quadratic polynomial, always remember that the middle term is divided into two in such a way that the product of the coefficients of divided terms must be equal to the product of the coefficients of first and last terms. Otherwise we would not be able to factorize the polynomial. And be careful with the signs of the terms.
Complete step-by-step answer:
We are given to factorize quadratic polynomials. Factorization of a polynomial is the process of writing the polynomial in terms of its factors.
(1) $ {x^2} + 9x + 18 $
$ {x^2} + 9x + 18 $ can also be written as
$
{x^2} + 3x + 6x + 18 \\
\Rightarrow x\left( {x + 3} \right) + 6\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {x + 6} \right) \;
$
Therefore, the factors of $ {x^2} + 9x + 18 $ are $ \left( {x + 3} \right),\left( {x + 6} \right) $
(2) $ {x^2} - 10x + 9 $
$ {x^2} - 10x + 9 $ can also be written as
$
{x^2} - 9x - x + 9 \\
\Rightarrow x\left( {x - 9} \right) - 1\left( {x - 9} \right) \\
\Rightarrow \left( {x - 9} \right)\left( {x - 1} \right) \;
$
Therefore, the factors of $ {x^2} - 10x + 9 $ are $ \left( {x - 9} \right),\left( {x - 1} \right) $
(3) $ {y^2} + 24y + 144 $
$ {y^2} + 24y + 144 $ can also be written as
$
{y^2} + 12y + 12y + 144 \\
\Rightarrow y\left( {y + 12} \right) + 12\left( {y + 12} \right) \\
\Rightarrow \left( {y + 12} \right)\left( {y + 12} \right) = {\left( {y + 12} \right)^2} \;
$
$ {y^2} + 24y + 144 $ is $ {\left( {y + 12} \right)^2} $
(4) $ 5{y^2} + 5y - 10 $
$ 5{y^2} + 5y - 10 $ can also be written as
$
5{y^2} + 10y - 5y - 10 \\
\Rightarrow 5y\left( {y + 2} \right) - 5\left( {y + 2} \right) \\
\Rightarrow \left( {y + 2} \right)\left( {5y - 5} \right) \;
$
The factors of $ 5{y^2} + 5y - 10 $ are \[\left( {y + 2} \right),\left( {5y - 5} \right)\]
(5) $ {p^2} - 2p - 35 $
$ {p^2} - 2p - 35 $ can also be written as
$
{p^2} - 7p + 5p - 35 \\
\Rightarrow p\left( {p - 7} \right) + 5\left( {p - 7} \right) \\
\Rightarrow \left( {p - 7} \right)\left( {p + 5} \right) \;
$
Therefore, the factors of $ {p^2} - 2p - 35 $ are $ \left( {p - 7} \right),\left( {p + 5} \right) $
(6) $ {p^2} - 7p - 44 $
$ {p^2} - 7p - 44 $ can also be written as
$
{p^2} - 11p + 4p - 44 \\
\Rightarrow p\left( {p - 11} \right) + 4\left( {p - 11} \right) \\
\Rightarrow \left( {p - 11} \right)\left( {p + 4} \right) \;
$
Therefore, the factors of $ {p^2} - 7p - 44 $ are $ \left( {p - 11} \right),\left( {p + 4} \right) $
(7) $ {m^2} - 23m + 120 $
$ {m^2} - 23m + 120 $ can also be written as
$
{m^2} - 15m - 8m + 120 \\
\Rightarrow m\left( {m - 15} \right) - 8\left( {m - 15} \right) \\
\Rightarrow \left( {m - 15} \right)\left( {m - 8} \right) \;
$
The factors of $ {m^2} - 23m + 120 $ are $ \left( {m - 15} \right),\left( {m - 8} \right) $
(8) $ {m^2} - 25m + 100 $
$ {m^2} - 25m + 100 $ can also be written as
$
{m^2} - 20m - 5m + 100 \\
\Rightarrow m\left( {m - 20} \right) - 5\left( {m - 20} \right) \\
\Rightarrow \left( {m - 20} \right)\left( {m - 5} \right) \;
$
The factors of $ {m^2} - 25m + 100 $ are $ \left( {m - 20} \right),\left( {m - 5} \right) $
(9) $ 3{x^2} + 14x + 15 $
$ 3{x^2} + 14x + 15 $ can also be written as
$
3{x^2} + 9x + 5x + 15 \\
\Rightarrow 3x\left( {x + 3} \right) + 5\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {3x + 5} \right) \;
$
The factors of $ 3{x^2} + 14x + 15 $ are $ \left( {x + 3} \right),\left( {3x + 5} \right) $
(10) $ 2{x^2} + x - 45 $
$ 2{x^2} + x - 45 $ can also be written as
$
2{x^2} + 10x - 9x - 45 \\
\Rightarrow 2x\left( {x + 5} \right) - 9\left( {x + 5} \right) \\
\Rightarrow \left( {x + 5} \right)\left( {2x - 9} \right) \;
$
The factors of $ 2{x^2} + x - 45 $ are $ \left( {x + 5} \right),\left( {2x - 9} \right) $
(11) $ 20{x^2} - 26x + 8 $
$ 20{x^2} - 26x + 8 $ can also be written as
$
20{x^2} - 10x - 16x + 8 \\
\Rightarrow 10x\left( {2x - 1} \right) - 8\left( {2x - 1} \right) \\
\Rightarrow \left( {2x - 1} \right)\left( {10x - 8} \right) \;
$
The factors of $ 20{x^2} - 26x + 8 $ are $ \left( {2x - 1} \right),\left( {10x - 8} \right) $
(12) $ 44{x^2} - x - 3 $
$ 44{x^2} - x - 3 $ can also be written as
$
44{x^2} - 11x + 12x - 3 \\
\Rightarrow 11x\left( {4x - 1} \right) + 3\left( {4x - 1} \right) \\
\Rightarrow \left( {4x - 1} \right)\left( {11x + 3} \right) \;
$
The factors of $ 44{x^2} - x - 3 $ are $ \left( {4x - 1} \right),\left( {11x + 3} \right) $
Note: When we are factoring a quadratic polynomial, always remember that the middle term is divided into two in such a way that the product of the coefficients of divided terms must be equal to the product of the coefficients of first and last terms. Otherwise we would not be able to factorize the polynomial. And be careful with the signs of the terms.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


