Answer
Verified
428.4k+ views
Hint: Every quadratic polynomial will have two factors. As the above 12 polynomials are quadratic, each polynomial will have two factors. First step is to divide the middle term into two according to the product of coefficients of first and third terms.
Complete step-by-step answer:
We are given to factorize quadratic polynomials. Factorization of a polynomial is the process of writing the polynomial in terms of its factors.
(1) $ {x^2} + 9x + 18 $
$ {x^2} + 9x + 18 $ can also be written as
$
{x^2} + 3x + 6x + 18 \\
\Rightarrow x\left( {x + 3} \right) + 6\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {x + 6} \right) \;
$
Therefore, the factors of $ {x^2} + 9x + 18 $ are $ \left( {x + 3} \right),\left( {x + 6} \right) $
(2) $ {x^2} - 10x + 9 $
$ {x^2} - 10x + 9 $ can also be written as
$
{x^2} - 9x - x + 9 \\
\Rightarrow x\left( {x - 9} \right) - 1\left( {x - 9} \right) \\
\Rightarrow \left( {x - 9} \right)\left( {x - 1} \right) \;
$
Therefore, the factors of $ {x^2} - 10x + 9 $ are $ \left( {x - 9} \right),\left( {x - 1} \right) $
(3) $ {y^2} + 24y + 144 $
$ {y^2} + 24y + 144 $ can also be written as
$
{y^2} + 12y + 12y + 144 \\
\Rightarrow y\left( {y + 12} \right) + 12\left( {y + 12} \right) \\
\Rightarrow \left( {y + 12} \right)\left( {y + 12} \right) = {\left( {y + 12} \right)^2} \;
$
$ {y^2} + 24y + 144 $ is $ {\left( {y + 12} \right)^2} $
(4) $ 5{y^2} + 5y - 10 $
$ 5{y^2} + 5y - 10 $ can also be written as
$
5{y^2} + 10y - 5y - 10 \\
\Rightarrow 5y\left( {y + 2} \right) - 5\left( {y + 2} \right) \\
\Rightarrow \left( {y + 2} \right)\left( {5y - 5} \right) \;
$
The factors of $ 5{y^2} + 5y - 10 $ are \[\left( {y + 2} \right),\left( {5y - 5} \right)\]
(5) $ {p^2} - 2p - 35 $
$ {p^2} - 2p - 35 $ can also be written as
$
{p^2} - 7p + 5p - 35 \\
\Rightarrow p\left( {p - 7} \right) + 5\left( {p - 7} \right) \\
\Rightarrow \left( {p - 7} \right)\left( {p + 5} \right) \;
$
Therefore, the factors of $ {p^2} - 2p - 35 $ are $ \left( {p - 7} \right),\left( {p + 5} \right) $
(6) $ {p^2} - 7p - 44 $
$ {p^2} - 7p - 44 $ can also be written as
$
{p^2} - 11p + 4p - 44 \\
\Rightarrow p\left( {p - 11} \right) + 4\left( {p - 11} \right) \\
\Rightarrow \left( {p - 11} \right)\left( {p + 4} \right) \;
$
Therefore, the factors of $ {p^2} - 7p - 44 $ are $ \left( {p - 11} \right),\left( {p + 4} \right) $
(7) $ {m^2} - 23m + 120 $
$ {m^2} - 23m + 120 $ can also be written as
$
{m^2} - 15m - 8m + 120 \\
\Rightarrow m\left( {m - 15} \right) - 8\left( {m - 15} \right) \\
\Rightarrow \left( {m - 15} \right)\left( {m - 8} \right) \;
$
The factors of $ {m^2} - 23m + 120 $ are $ \left( {m - 15} \right),\left( {m - 8} \right) $
(8) $ {m^2} - 25m + 100 $
$ {m^2} - 25m + 100 $ can also be written as
$
{m^2} - 20m - 5m + 100 \\
\Rightarrow m\left( {m - 20} \right) - 5\left( {m - 20} \right) \\
\Rightarrow \left( {m - 20} \right)\left( {m - 5} \right) \;
$
The factors of $ {m^2} - 25m + 100 $ are $ \left( {m - 20} \right),\left( {m - 5} \right) $
(9) $ 3{x^2} + 14x + 15 $
$ 3{x^2} + 14x + 15 $ can also be written as
$
3{x^2} + 9x + 5x + 15 \\
\Rightarrow 3x\left( {x + 3} \right) + 5\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {3x + 5} \right) \;
$
The factors of $ 3{x^2} + 14x + 15 $ are $ \left( {x + 3} \right),\left( {3x + 5} \right) $
(10) $ 2{x^2} + x - 45 $
$ 2{x^2} + x - 45 $ can also be written as
$
2{x^2} + 10x - 9x - 45 \\
\Rightarrow 2x\left( {x + 5} \right) - 9\left( {x + 5} \right) \\
\Rightarrow \left( {x + 5} \right)\left( {2x - 9} \right) \;
$
The factors of $ 2{x^2} + x - 45 $ are $ \left( {x + 5} \right),\left( {2x - 9} \right) $
(11) $ 20{x^2} - 26x + 8 $
$ 20{x^2} - 26x + 8 $ can also be written as
$
20{x^2} - 10x - 16x + 8 \\
\Rightarrow 10x\left( {2x - 1} \right) - 8\left( {2x - 1} \right) \\
\Rightarrow \left( {2x - 1} \right)\left( {10x - 8} \right) \;
$
The factors of $ 20{x^2} - 26x + 8 $ are $ \left( {2x - 1} \right),\left( {10x - 8} \right) $
(12) $ 44{x^2} - x - 3 $
$ 44{x^2} - x - 3 $ can also be written as
$
44{x^2} - 11x + 12x - 3 \\
\Rightarrow 11x\left( {4x - 1} \right) + 3\left( {4x - 1} \right) \\
\Rightarrow \left( {4x - 1} \right)\left( {11x + 3} \right) \;
$
The factors of $ 44{x^2} - x - 3 $ are $ \left( {4x - 1} \right),\left( {11x + 3} \right) $
Note: When we are factoring a quadratic polynomial, always remember that the middle term is divided into two in such a way that the product of the coefficients of divided terms must be equal to the product of the coefficients of first and last terms. Otherwise we would not be able to factorize the polynomial. And be careful with the signs of the terms.
Complete step-by-step answer:
We are given to factorize quadratic polynomials. Factorization of a polynomial is the process of writing the polynomial in terms of its factors.
(1) $ {x^2} + 9x + 18 $
$ {x^2} + 9x + 18 $ can also be written as
$
{x^2} + 3x + 6x + 18 \\
\Rightarrow x\left( {x + 3} \right) + 6\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {x + 6} \right) \;
$
Therefore, the factors of $ {x^2} + 9x + 18 $ are $ \left( {x + 3} \right),\left( {x + 6} \right) $
(2) $ {x^2} - 10x + 9 $
$ {x^2} - 10x + 9 $ can also be written as
$
{x^2} - 9x - x + 9 \\
\Rightarrow x\left( {x - 9} \right) - 1\left( {x - 9} \right) \\
\Rightarrow \left( {x - 9} \right)\left( {x - 1} \right) \;
$
Therefore, the factors of $ {x^2} - 10x + 9 $ are $ \left( {x - 9} \right),\left( {x - 1} \right) $
(3) $ {y^2} + 24y + 144 $
$ {y^2} + 24y + 144 $ can also be written as
$
{y^2} + 12y + 12y + 144 \\
\Rightarrow y\left( {y + 12} \right) + 12\left( {y + 12} \right) \\
\Rightarrow \left( {y + 12} \right)\left( {y + 12} \right) = {\left( {y + 12} \right)^2} \;
$
$ {y^2} + 24y + 144 $ is $ {\left( {y + 12} \right)^2} $
(4) $ 5{y^2} + 5y - 10 $
$ 5{y^2} + 5y - 10 $ can also be written as
$
5{y^2} + 10y - 5y - 10 \\
\Rightarrow 5y\left( {y + 2} \right) - 5\left( {y + 2} \right) \\
\Rightarrow \left( {y + 2} \right)\left( {5y - 5} \right) \;
$
The factors of $ 5{y^2} + 5y - 10 $ are \[\left( {y + 2} \right),\left( {5y - 5} \right)\]
(5) $ {p^2} - 2p - 35 $
$ {p^2} - 2p - 35 $ can also be written as
$
{p^2} - 7p + 5p - 35 \\
\Rightarrow p\left( {p - 7} \right) + 5\left( {p - 7} \right) \\
\Rightarrow \left( {p - 7} \right)\left( {p + 5} \right) \;
$
Therefore, the factors of $ {p^2} - 2p - 35 $ are $ \left( {p - 7} \right),\left( {p + 5} \right) $
(6) $ {p^2} - 7p - 44 $
$ {p^2} - 7p - 44 $ can also be written as
$
{p^2} - 11p + 4p - 44 \\
\Rightarrow p\left( {p - 11} \right) + 4\left( {p - 11} \right) \\
\Rightarrow \left( {p - 11} \right)\left( {p + 4} \right) \;
$
Therefore, the factors of $ {p^2} - 7p - 44 $ are $ \left( {p - 11} \right),\left( {p + 4} \right) $
(7) $ {m^2} - 23m + 120 $
$ {m^2} - 23m + 120 $ can also be written as
$
{m^2} - 15m - 8m + 120 \\
\Rightarrow m\left( {m - 15} \right) - 8\left( {m - 15} \right) \\
\Rightarrow \left( {m - 15} \right)\left( {m - 8} \right) \;
$
The factors of $ {m^2} - 23m + 120 $ are $ \left( {m - 15} \right),\left( {m - 8} \right) $
(8) $ {m^2} - 25m + 100 $
$ {m^2} - 25m + 100 $ can also be written as
$
{m^2} - 20m - 5m + 100 \\
\Rightarrow m\left( {m - 20} \right) - 5\left( {m - 20} \right) \\
\Rightarrow \left( {m - 20} \right)\left( {m - 5} \right) \;
$
The factors of $ {m^2} - 25m + 100 $ are $ \left( {m - 20} \right),\left( {m - 5} \right) $
(9) $ 3{x^2} + 14x + 15 $
$ 3{x^2} + 14x + 15 $ can also be written as
$
3{x^2} + 9x + 5x + 15 \\
\Rightarrow 3x\left( {x + 3} \right) + 5\left( {x + 3} \right) \\
\Rightarrow \left( {x + 3} \right)\left( {3x + 5} \right) \;
$
The factors of $ 3{x^2} + 14x + 15 $ are $ \left( {x + 3} \right),\left( {3x + 5} \right) $
(10) $ 2{x^2} + x - 45 $
$ 2{x^2} + x - 45 $ can also be written as
$
2{x^2} + 10x - 9x - 45 \\
\Rightarrow 2x\left( {x + 5} \right) - 9\left( {x + 5} \right) \\
\Rightarrow \left( {x + 5} \right)\left( {2x - 9} \right) \;
$
The factors of $ 2{x^2} + x - 45 $ are $ \left( {x + 5} \right),\left( {2x - 9} \right) $
(11) $ 20{x^2} - 26x + 8 $
$ 20{x^2} - 26x + 8 $ can also be written as
$
20{x^2} - 10x - 16x + 8 \\
\Rightarrow 10x\left( {2x - 1} \right) - 8\left( {2x - 1} \right) \\
\Rightarrow \left( {2x - 1} \right)\left( {10x - 8} \right) \;
$
The factors of $ 20{x^2} - 26x + 8 $ are $ \left( {2x - 1} \right),\left( {10x - 8} \right) $
(12) $ 44{x^2} - x - 3 $
$ 44{x^2} - x - 3 $ can also be written as
$
44{x^2} - 11x + 12x - 3 \\
\Rightarrow 11x\left( {4x - 1} \right) + 3\left( {4x - 1} \right) \\
\Rightarrow \left( {4x - 1} \right)\left( {11x + 3} \right) \;
$
The factors of $ 44{x^2} - x - 3 $ are $ \left( {4x - 1} \right),\left( {11x + 3} \right) $
Note: When we are factoring a quadratic polynomial, always remember that the middle term is divided into two in such a way that the product of the coefficients of divided terms must be equal to the product of the coefficients of first and last terms. Otherwise we would not be able to factorize the polynomial. And be careful with the signs of the terms.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths