
Factorise $ {{x}^{3}}+6{{x}^{2}}+11x+6 $ using factor theorem and long division method. \[\]
Answer
552.3k+ views
Hint: We use trial and error method to guess a root for the given polynomial $ {{x}^{3}}+6{{x}^{2}}+11x+6 $ . Let that root be $ a $ . We use factor theorem which states that a polynomial $ p\left( x \right) $ has a factor $ \left( x-a \right) $ if and only if $ p\left( a \right)=0 $ in other words $ a $ is a zero of $ p\left( x \right) $ . So we divide $ {{x}^{3}}+6{{x}^{2}}+11x+6 $ by $ x-a $ find the other factor as the quotient in long division method. \[\]
Complete step by step answer:
Let us denote $ p\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6 $ . Let us try to guess a root of $ p\left( x \right) $ by trial and error. We observe that the given polynomial $ {{x}^{3}}+6{{x}^{2}}+11x+6 $ have only positive coefficients and positive constant term. So the root cannot be positive. So let us put a negative number $ x=-1 $ as root in the polynomial and see if it is a root or not. We have
\[\begin{align}
& p\left( -1 \right)={{\left( -1 \right)}^{3}}+6{{\left( -1 \right)}^{2}}+11\left( -1 \right)+6 \\
& \Rightarrow p\left( -1 \right)=-1+6-11+6 \\
& \Rightarrow p\left( -1 \right)=12-12=0 \\
\end{align}\]
So $ x=-1 $ is root of the polynomial $ p\left( x \right) $ . So by factor theorem we have one factor of $ p\left( x \right) $ as $ x-\left( -1 \right)=x+1 $ . Let us use the long division method taking $ d\left( x \right)=x+1 $ as the divisor polynomial and find the other factor of $ p\left( x \right) $ in the quotient. \[\]
We have the divisor polynomial $ d\left( x \right)=x+1 $ has first term $ x $ and the dividend $ p\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6 $ has the first term $ {{x}^{3}} $ . So we have to multiply $ \dfrac{{{x}^{3}}}{x}={{x}^{2}} $ with $ d\left( x \right) $ to reach $ p\left( x \right) $ . We initiate the long division method. \[\]
\[\begin{align}
& x+1\overset{{{x}^{2}}}{\overline{\left){{{x}^{3}}+6{{x}^{2}}+11x+6}\right.}} \\
& \hspace{1.2 cm}\underline{{{x}^{3}}+{{x}^{2}}} \\
& \hspace{1.2 cm} 5{{x}^{2}}+11x+6\text{ } \\
\end{align}\]
So our new dividend polynomial is $ 5{{x}^{2}}+11x+6 $ . So we need to multiply $ \dfrac{5{{x}^{2}}}{x}=5x $ with $ d\left( x \right)=x+1 $ to proceed.
\[\begin{align}
& x+1\overset{{{x}^{2}}+5x}{\overline{\left){{{x}^{3}}+6{{x}^{2}}+11x+6}\right.}} \\
& \hspace{1.2 cm}\underline{{{x}^{3}}+{{x}^{2}}} \\
& \hspace{1.2 cm}5{{x}^{2}}+11x+6 \\
& \hspace{1.2 cm} \underline{5{{x}^{2}}\text{+}5x}\text{ } \\
& \hspace{1.2 cm}6x+6 \\
\end{align}\]
So our new dividend polynomial is $ 5{{x}^{2}}+11x+6 $ . So we need to multiply $ \dfrac{5{{x}^{2}}}{x}=5x $ with $ d\left( x \right) $ to proceed.
\[\begin{gathered}
x + 1\mathop{\left){\vphantom{1{{x^3} + 6{x^2} + 11x + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{{x^3} + 6{x^2} + 11x + 6}}}}
\limits^{\displaystyle \,\,\, {{x^2} + 5x + 6}} \\
{\hspace{-1 cm }}\underline {{x^3} + {x^2}} \\
{\text{ }}5{x^2} + 11x + 6 \\
{\hspace{-0.4 cm }}\underline {5{x^2}{\text{ + }}5x} {\text{ }} \\
{\hspace{0.5 cm }}6x + 6 \\
{\hspace{0.5 cm }}\underline {6x + 6} \\
{\hspace{0.5 cm }\text{ 0}} \\
\end{gathered} \]
So by factor theorem the polynomial at the quotient is the other factor $ q\left( x \right)={{x}^{2}}+5x+6 $ . So we have
\[\begin{align}
& p\left( x \right)=d\left( x \right)q\left( x \right) \\
& \Rightarrow {{x}^{3}}+6{{x}^{2}}+11x+6=\left( x+1 \right)\left( {{x}^{2}}+5x+6 \right) \\
\end{align}\]
We again guess a root for $ q\left( x \right)={{x}^{2}}+5x+6 $ . We put $ x=-2 $ in $ q\left( x \right) $ to have
\[q\left( -2 \right)={{\left( -2 \right)}^{2}}+5\left( -2 \right)+6=4-10+6=0\]
So $ x=-2 $ is zero of $ q\left( x \right) $ and hence by factor theorem $ x-\left( -2 \right)=x+2 $ . So we find other factor of by $ q\left( x \right) $ by long division method.
\[\begin{gathered}
x + 2\mathop{\left){\vphantom{1{{x^2} + 5x + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{{x^2} + 5x + 6}}}}
\limits^{\displaystyle \,\,\, {x + 3}} \\
{\hspace{0.5 cm}}\underline {{x^2} + 2x} \\
{\text{ }}3x + 6 \\
{\text{ }}\underline {3x + 6} \\
{\text{ 0}} \\
\end{gathered} \]
So $ x+3 $ is the other factor of $ q\left( x \right) $ . So we have $ q\left( x \right)={{x}^{2}}+5x+6=\left( x+2 \right)\left( x+3 \right) $ . So the given polynomial in factorized from is
\[\begin{align}
& {{x}^{3}}+6{{x}^{2}}+11x+6=\left( x+1 \right)\left( {{x}^{2}}+5x+6 \right) \\
& \Rightarrow {{x}^{3}}+6{{x}^{2}}+11x+6=\left( x+1 \right)\left( x+2 \right)\left( x+3 \right) \\
\end{align}\]
Note:
We note that remainder theorem states that if linear polynomial $ x-a $ divides the polynomial $ p\left( x \right) $ then it will leave the remainder $ p\left( a \right) $ . When $ p\left( a \right)=0 $ , the remainder theorem is specialized as factor theorem. We note that that when we divide a divided polynomial $ p\left( x \right) $ with degree $ n $ by some divisor polynomial $ d\left( x \right) $ with degree $ m\le n $ then we get the quotient polynomial $ q\left( x \right) $ of degree $ n-m $ and the remainder polynomial as $ r\left( x \right) $ of degree either equal to $ m $ or $ m-1 $ .
Complete step by step answer:
Let us denote $ p\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6 $ . Let us try to guess a root of $ p\left( x \right) $ by trial and error. We observe that the given polynomial $ {{x}^{3}}+6{{x}^{2}}+11x+6 $ have only positive coefficients and positive constant term. So the root cannot be positive. So let us put a negative number $ x=-1 $ as root in the polynomial and see if it is a root or not. We have
\[\begin{align}
& p\left( -1 \right)={{\left( -1 \right)}^{3}}+6{{\left( -1 \right)}^{2}}+11\left( -1 \right)+6 \\
& \Rightarrow p\left( -1 \right)=-1+6-11+6 \\
& \Rightarrow p\left( -1 \right)=12-12=0 \\
\end{align}\]
So $ x=-1 $ is root of the polynomial $ p\left( x \right) $ . So by factor theorem we have one factor of $ p\left( x \right) $ as $ x-\left( -1 \right)=x+1 $ . Let us use the long division method taking $ d\left( x \right)=x+1 $ as the divisor polynomial and find the other factor of $ p\left( x \right) $ in the quotient. \[\]
We have the divisor polynomial $ d\left( x \right)=x+1 $ has first term $ x $ and the dividend $ p\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6 $ has the first term $ {{x}^{3}} $ . So we have to multiply $ \dfrac{{{x}^{3}}}{x}={{x}^{2}} $ with $ d\left( x \right) $ to reach $ p\left( x \right) $ . We initiate the long division method. \[\]
\[\begin{align}
& x+1\overset{{{x}^{2}}}{\overline{\left){{{x}^{3}}+6{{x}^{2}}+11x+6}\right.}} \\
& \hspace{1.2 cm}\underline{{{x}^{3}}+{{x}^{2}}} \\
& \hspace{1.2 cm} 5{{x}^{2}}+11x+6\text{ } \\
\end{align}\]
So our new dividend polynomial is $ 5{{x}^{2}}+11x+6 $ . So we need to multiply $ \dfrac{5{{x}^{2}}}{x}=5x $ with $ d\left( x \right)=x+1 $ to proceed.
\[\begin{align}
& x+1\overset{{{x}^{2}}+5x}{\overline{\left){{{x}^{3}}+6{{x}^{2}}+11x+6}\right.}} \\
& \hspace{1.2 cm}\underline{{{x}^{3}}+{{x}^{2}}} \\
& \hspace{1.2 cm}5{{x}^{2}}+11x+6 \\
& \hspace{1.2 cm} \underline{5{{x}^{2}}\text{+}5x}\text{ } \\
& \hspace{1.2 cm}6x+6 \\
\end{align}\]
So our new dividend polynomial is $ 5{{x}^{2}}+11x+6 $ . So we need to multiply $ \dfrac{5{{x}^{2}}}{x}=5x $ with $ d\left( x \right) $ to proceed.
\[\begin{gathered}
x + 1\mathop{\left){\vphantom{1{{x^3} + 6{x^2} + 11x + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{{x^3} + 6{x^2} + 11x + 6}}}}
\limits^{\displaystyle \,\,\, {{x^2} + 5x + 6}} \\
{\hspace{-1 cm }}\underline {{x^3} + {x^2}} \\
{\text{ }}5{x^2} + 11x + 6 \\
{\hspace{-0.4 cm }}\underline {5{x^2}{\text{ + }}5x} {\text{ }} \\
{\hspace{0.5 cm }}6x + 6 \\
{\hspace{0.5 cm }}\underline {6x + 6} \\
{\hspace{0.5 cm }\text{ 0}} \\
\end{gathered} \]
So by factor theorem the polynomial at the quotient is the other factor $ q\left( x \right)={{x}^{2}}+5x+6 $ . So we have
\[\begin{align}
& p\left( x \right)=d\left( x \right)q\left( x \right) \\
& \Rightarrow {{x}^{3}}+6{{x}^{2}}+11x+6=\left( x+1 \right)\left( {{x}^{2}}+5x+6 \right) \\
\end{align}\]
We again guess a root for $ q\left( x \right)={{x}^{2}}+5x+6 $ . We put $ x=-2 $ in $ q\left( x \right) $ to have
\[q\left( -2 \right)={{\left( -2 \right)}^{2}}+5\left( -2 \right)+6=4-10+6=0\]
So $ x=-2 $ is zero of $ q\left( x \right) $ and hence by factor theorem $ x-\left( -2 \right)=x+2 $ . So we find other factor of by $ q\left( x \right) $ by long division method.
\[\begin{gathered}
x + 2\mathop{\left){\vphantom{1{{x^2} + 5x + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{{x^2} + 5x + 6}}}}
\limits^{\displaystyle \,\,\, {x + 3}} \\
{\hspace{0.5 cm}}\underline {{x^2} + 2x} \\
{\text{ }}3x + 6 \\
{\text{ }}\underline {3x + 6} \\
{\text{ 0}} \\
\end{gathered} \]
So $ x+3 $ is the other factor of $ q\left( x \right) $ . So we have $ q\left( x \right)={{x}^{2}}+5x+6=\left( x+2 \right)\left( x+3 \right) $ . So the given polynomial in factorized from is
\[\begin{align}
& {{x}^{3}}+6{{x}^{2}}+11x+6=\left( x+1 \right)\left( {{x}^{2}}+5x+6 \right) \\
& \Rightarrow {{x}^{3}}+6{{x}^{2}}+11x+6=\left( x+1 \right)\left( x+2 \right)\left( x+3 \right) \\
\end{align}\]
Note:
We note that remainder theorem states that if linear polynomial $ x-a $ divides the polynomial $ p\left( x \right) $ then it will leave the remainder $ p\left( a \right) $ . When $ p\left( a \right)=0 $ , the remainder theorem is specialized as factor theorem. We note that that when we divide a divided polynomial $ p\left( x \right) $ with degree $ n $ by some divisor polynomial $ d\left( x \right) $ with degree $ m\le n $ then we get the quotient polynomial $ q\left( x \right) $ of degree $ n-m $ and the remainder polynomial as $ r\left( x \right) $ of degree either equal to $ m $ or $ m-1 $ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

