
Factorise ${{x}^{2}}+5x+6$ into linear factors.
Answer
610.8k+ views
Hint: Use $\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab$ or factorise using the method of completing the square or use quadratic formula [$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$] and factor theorem [if $f(a)=0$ then $x-a$ is the factor of f(x)].
Complete step-by-step solution -
Let ${{x}^{2}}+5x+6=\left( x+a \right)\left( x+b \right)$
Using $\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab$ we get
${{x}^{2}}+5x+6={{x}^{2}}+\left( a+b \right)x+ab$
Comparing coefficients of x, we get
$a+b=5\text{ (i)}$
Comparing constant terms, we get
$ab=6\text{ (ii)}$
We can factorise 6 in following ways
$6=6\times 1$ or $6=3\times 2$
If a = 6 and b = 1 then we have $a+b=7\ne 5$
If a = 3 and b = 2 then we have $a+b=3+2=5$
Hence, we get a = 3 and b = 2
$\Rightarrow {{x}^{2}}+5x+6=\left( x+3 \right)\left( x+2 \right)$
Sometimes it is not possible to factorise by using hit and trial method as above. In those cases, we factorise using the method of completing the square.
In this method we use the following identities to factorise
[i] ${{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}$
[ii] ${{x}^{2}}-2ax+{{a}^{2}}={{\left( x-a \right)}^{2}}$
[iii] ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Step 1: Make the coefficient of leading term as 1
Here the leading term has a coefficient of the leading term is already one. So, we proceed to step 2.
Step 2: Write the middle term in the form of 2ax.
${{x}^{2}}+5x+6={{x}^{2}}+2\times \dfrac{5}{2}\times x+6$
Here the middle term 5x has been written in form of 2ax with a = $\dfrac{5}{2}$
Step 3: Add and Subtract ${{a}^{2}}$
\[\Rightarrow {{x}^{2}}+5x+6={{x}^{2}}+2\times \dfrac{5}{2}x+6+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}\]
Step 4: Use ${{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}$ or ${{x}^{2}}-2ax+{{a}^{2}}={{\left( x-a \right)}^{2}}$ whichever is applicable
${{x}^{2}}+2\times \dfrac{5}{2}x+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6$ using ${{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}$
$\Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6$
Simplifying we get
$\begin{align}
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25}{4}+6 \\
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25-6\times 4}{4} \\
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25-24}{4} \\
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{1}{4} \\
\end{align}$
Step 5: Write the constant term in the form of ${{b}^{2}}$
$\Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{1}{4}={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}$
Step 6: If the resultant expression is of form ${{a}^{2}}+{{b}^{2}}$then the given expression cannot be factorised.
If it is of the form ${{a}^{2}}-{{b}^{2}}$ then use ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Here the resultant expression is of the form of ${{a}^{2}}-{{b}^{2}}$ where $a=\left( x+\dfrac{5}{2} \right)$ and \[b\text{ }=\dfrac{1}{2}\]
Using ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ we get
${{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}=\left( x+\dfrac{5}{2}+\dfrac{1}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{1}{2} \right)$
Simplifying we get
$\begin{align}
& {{x}^{2}}+5x+6=\left( x+\dfrac{5}{2}+\dfrac{1}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{1}{2} \right)=\left( x+\dfrac{5+1}{2} \right)\left( x+\dfrac{5-1}{2} \right) \\
& \Rightarrow {{x}^{2}}+5x+6=\left( x+\dfrac{6}{2} \right)\left( x+\dfrac{4}{2} \right)=\left( x+3 \right)\left( x+2 \right) \\
\end{align}$
Hence ${{x}^{2}}+5x+6=\left( x+3 \right)\left( x+2 \right)$
Note: Quadratic formula: The roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}\text{ and }\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$.
We can factorise quadratic expressions using quadratic formulas also.
If ${{r}_{1}}$ and ${{r}_{2}}$ are the roots of quadratic expression(found using quadratic formula) then the expression = $a\left( x-{{r}_{1}} \right)\left( x-{{r}_{2}} \right)$ where a is the leading coefficient of the quadratic expression.
Here a = 1, b = 5 and c = 6
We know from quadratic formula ${{r}_{1}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ and ${{r}_{2}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the values of a, b and c in the expression for ${{r}_{1}}$ and ${{r}_{2}}$ we get
${{r}_{1}}=\dfrac{-5+\sqrt{{{5}^{2}}-4\times 1\times 6}}{2\times 1}$ and ${{r}_{2}}=\dfrac{-5-\sqrt{{{5}^{2}}-4\times 1\times 6}}{2\times 1}$
$\Rightarrow {{r}_{1}}=-2\text{ and }{{r}_{2}}=-3$
Hence ${{x}^{2}}+5x+6=\left( x-\left( -2 \right) \right)\left( x-\left( -3 \right) \right)$
$\Rightarrow {{x}^{2}}+5x+6=\left( x+2 \right)\left( x+3 \right)$
Complete step-by-step solution -
Let ${{x}^{2}}+5x+6=\left( x+a \right)\left( x+b \right)$
Using $\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab$ we get
${{x}^{2}}+5x+6={{x}^{2}}+\left( a+b \right)x+ab$
Comparing coefficients of x, we get
$a+b=5\text{ (i)}$
Comparing constant terms, we get
$ab=6\text{ (ii)}$
We can factorise 6 in following ways
$6=6\times 1$ or $6=3\times 2$
If a = 6 and b = 1 then we have $a+b=7\ne 5$
If a = 3 and b = 2 then we have $a+b=3+2=5$
Hence, we get a = 3 and b = 2
$\Rightarrow {{x}^{2}}+5x+6=\left( x+3 \right)\left( x+2 \right)$
Sometimes it is not possible to factorise by using hit and trial method as above. In those cases, we factorise using the method of completing the square.
In this method we use the following identities to factorise
[i] ${{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}$
[ii] ${{x}^{2}}-2ax+{{a}^{2}}={{\left( x-a \right)}^{2}}$
[iii] ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Step 1: Make the coefficient of leading term as 1
Here the leading term has a coefficient of the leading term is already one. So, we proceed to step 2.
Step 2: Write the middle term in the form of 2ax.
${{x}^{2}}+5x+6={{x}^{2}}+2\times \dfrac{5}{2}\times x+6$
Here the middle term 5x has been written in form of 2ax with a = $\dfrac{5}{2}$
Step 3: Add and Subtract ${{a}^{2}}$
\[\Rightarrow {{x}^{2}}+5x+6={{x}^{2}}+2\times \dfrac{5}{2}x+6+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}\]
Step 4: Use ${{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}$ or ${{x}^{2}}-2ax+{{a}^{2}}={{\left( x-a \right)}^{2}}$ whichever is applicable
${{x}^{2}}+2\times \dfrac{5}{2}x+{{\left( \dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6$ using ${{x}^{2}}+2ax+{{a}^{2}}={{\left( x+a \right)}^{2}}$
$\Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{5}{2} \right)}^{2}}+6$
Simplifying we get
$\begin{align}
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25}{4}+6 \\
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25-6\times 4}{4} \\
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{25-24}{4} \\
& \Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{1}{4} \\
\end{align}$
Step 5: Write the constant term in the form of ${{b}^{2}}$
$\Rightarrow {{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-\dfrac{1}{4}={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}$
Step 6: If the resultant expression is of form ${{a}^{2}}+{{b}^{2}}$then the given expression cannot be factorised.
If it is of the form ${{a}^{2}}-{{b}^{2}}$ then use ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Here the resultant expression is of the form of ${{a}^{2}}-{{b}^{2}}$ where $a=\left( x+\dfrac{5}{2} \right)$ and \[b\text{ }=\dfrac{1}{2}\]
Using ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ we get
${{x}^{2}}+5x+6={{\left( x+\dfrac{5}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}=\left( x+\dfrac{5}{2}+\dfrac{1}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{1}{2} \right)$
Simplifying we get
$\begin{align}
& {{x}^{2}}+5x+6=\left( x+\dfrac{5}{2}+\dfrac{1}{2} \right)\left( x+\dfrac{5}{2}-\dfrac{1}{2} \right)=\left( x+\dfrac{5+1}{2} \right)\left( x+\dfrac{5-1}{2} \right) \\
& \Rightarrow {{x}^{2}}+5x+6=\left( x+\dfrac{6}{2} \right)\left( x+\dfrac{4}{2} \right)=\left( x+3 \right)\left( x+2 \right) \\
\end{align}$
Hence ${{x}^{2}}+5x+6=\left( x+3 \right)\left( x+2 \right)$
Note: Quadratic formula: The roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}\text{ and }\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$.
We can factorise quadratic expressions using quadratic formulas also.
If ${{r}_{1}}$ and ${{r}_{2}}$ are the roots of quadratic expression(found using quadratic formula) then the expression = $a\left( x-{{r}_{1}} \right)\left( x-{{r}_{2}} \right)$ where a is the leading coefficient of the quadratic expression.
Here a = 1, b = 5 and c = 6
We know from quadratic formula ${{r}_{1}}=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ and ${{r}_{2}}=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the values of a, b and c in the expression for ${{r}_{1}}$ and ${{r}_{2}}$ we get
${{r}_{1}}=\dfrac{-5+\sqrt{{{5}^{2}}-4\times 1\times 6}}{2\times 1}$ and ${{r}_{2}}=\dfrac{-5-\sqrt{{{5}^{2}}-4\times 1\times 6}}{2\times 1}$
$\Rightarrow {{r}_{1}}=-2\text{ and }{{r}_{2}}=-3$
Hence ${{x}^{2}}+5x+6=\left( x-\left( -2 \right) \right)\left( x-\left( -3 \right) \right)$
$\Rightarrow {{x}^{2}}+5x+6=\left( x+2 \right)\left( x+3 \right)$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

