
Factorise
(i) ${a^4} - {b^4}$
(ii) ${p^4} - 81$
(iii) ${x^4} - {(y + z)^4}$
(iv) ${x^4} - {(x - z)^4}$
(v) ${a^4} - 2{a^2}{b^2} + {b^4}$
Answer
561k+ views
Hint:
The given polynomials are of degree four. We can factorise them using the identities in Algebra. Repeated applications may be needed for simplification.
Useful formula:
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
We have to factorise the given equations.
(i) ${a^4} - {b^4}$
We can write it as ${({a^2})^2} - {({b^2})^2}$.
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have, ${({a^2})^2} - {({b^2})^2} = ({a^2} - {b^2})({a^2} + {b^2})$
We can again factorise using the same result.
This gives,
${({a^2})^2} - {({b^2})^2} = (a - b)(a + b)({a^2} + {b^2})$
So we have,
${a^4} - {b^4} = (a - b)(a + b)({a^2} + {b^2})$
(ii) ${p^4} - 81$
This can be written in the form ${({p^2})^2} - {9^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({p^2})^2} - {9^2} = ({p^2} - 9)({p^2} + 9)$
We can again factorise using the same result for ${p^2} - 9$.
We have ${p^2} - 9 = {p^2} - {3^2}$
This gives,
${({p^2})^2} - {9^2} = (p - 3)(p + 3)({p^2} + 9)$
So we have,
${p^4} - 81 = (p - 3)(p + 3)({p^2} + 9)$
(iii) ${x^4} - {(y + z)^4}$
This expression can be rewritten as ${({x^2})^2} - {({(y + z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = ({x^2} - {(y + z)^2})({x^2} + {(y + z)^2})$
Again we can use the same formula for ${x^2} - {(y + z)^2}$.
We have, ${x^2} - {(y + z)^2} = (x - (y + z))(x + (y + z))$
$ \Rightarrow {x^2} - {(y + z)^2} = (x - y - z)(x + y + z)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {(y + z)^2})$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
We can use this result for ${(y + z)^2}$.
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
So we have,
${x^4} - {(y + z)^4} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
(iv) ${x^4} - {(x - z)^4}$
We can write this as ${({x^2})^2} - {({(x - z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = ({x^2} - {(x - z)^2})({x^2} + {(x - z)^2})$
Again we can use the same formula for ${x^2} - {(x - z)^2}$.
${x^2} - {(x - z)^2} = (x - (x - z))(x + (x - z))$
Simplifying we get,
${x^2} - {(x - z)^2} = (x - x + z)(x + x - z)$
$ \Rightarrow {x^2} - {(x - z)^2} = z(2x - z)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + {(x - z)^2})$
We have, ${(a - b)^2} = {a^2} - 2ab + {b^2}$.
We can use this result for ${(x - z)^2}$.
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + ({x^2} - 2xz + {z^2}))$
Simplifying we get,
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)(2{x^2} - 2xz + {z^2})$
So we have,
${x^4} - {(x - z)^4} = z(2x - z)(2{x^2} - 2xz + {z^2})$
(v) ${a^4} - 2{a^2}{b^2} + {b^4}$
We can write it as ${({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
Comparing these two we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2} - {b^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {[(a - b)(a + b)]^2}$
Note:
When an equation of degree two or more is given, we have to factorise maximum to linear factors. The main identities used are the expansions of ${(a + b)^2},{(a - b)^2}$ and ${a^2} - {b^2}$. In certain questions repeated application of the same result may be needed.
The given polynomials are of degree four. We can factorise them using the identities in Algebra. Repeated applications may be needed for simplification.
Useful formula:
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
We have to factorise the given equations.
(i) ${a^4} - {b^4}$
We can write it as ${({a^2})^2} - {({b^2})^2}$.
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have, ${({a^2})^2} - {({b^2})^2} = ({a^2} - {b^2})({a^2} + {b^2})$
We can again factorise using the same result.
This gives,
${({a^2})^2} - {({b^2})^2} = (a - b)(a + b)({a^2} + {b^2})$
So we have,
${a^4} - {b^4} = (a - b)(a + b)({a^2} + {b^2})$
(ii) ${p^4} - 81$
This can be written in the form ${({p^2})^2} - {9^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({p^2})^2} - {9^2} = ({p^2} - 9)({p^2} + 9)$
We can again factorise using the same result for ${p^2} - 9$.
We have ${p^2} - 9 = {p^2} - {3^2}$
This gives,
${({p^2})^2} - {9^2} = (p - 3)(p + 3)({p^2} + 9)$
So we have,
${p^4} - 81 = (p - 3)(p + 3)({p^2} + 9)$
(iii) ${x^4} - {(y + z)^4}$
This expression can be rewritten as ${({x^2})^2} - {({(y + z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = ({x^2} - {(y + z)^2})({x^2} + {(y + z)^2})$
Again we can use the same formula for ${x^2} - {(y + z)^2}$.
We have, ${x^2} - {(y + z)^2} = (x - (y + z))(x + (y + z))$
$ \Rightarrow {x^2} - {(y + z)^2} = (x - y - z)(x + y + z)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {(y + z)^2})$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
We can use this result for ${(y + z)^2}$.
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
So we have,
${x^4} - {(y + z)^4} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
(iv) ${x^4} - {(x - z)^4}$
We can write this as ${({x^2})^2} - {({(x - z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = ({x^2} - {(x - z)^2})({x^2} + {(x - z)^2})$
Again we can use the same formula for ${x^2} - {(x - z)^2}$.
${x^2} - {(x - z)^2} = (x - (x - z))(x + (x - z))$
Simplifying we get,
${x^2} - {(x - z)^2} = (x - x + z)(x + x - z)$
$ \Rightarrow {x^2} - {(x - z)^2} = z(2x - z)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + {(x - z)^2})$
We have, ${(a - b)^2} = {a^2} - 2ab + {b^2}$.
We can use this result for ${(x - z)^2}$.
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + ({x^2} - 2xz + {z^2}))$
Simplifying we get,
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)(2{x^2} - 2xz + {z^2})$
So we have,
${x^4} - {(x - z)^4} = z(2x - z)(2{x^2} - 2xz + {z^2})$
(v) ${a^4} - 2{a^2}{b^2} + {b^4}$
We can write it as ${({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
Comparing these two we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2} - {b^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {[(a - b)(a + b)]^2}$
Note:
When an equation of degree two or more is given, we have to factorise maximum to linear factors. The main identities used are the expansions of ${(a + b)^2},{(a - b)^2}$ and ${a^2} - {b^2}$. In certain questions repeated application of the same result may be needed.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE


