
Factorise
(i) ${a^4} - {b^4}$
(ii) ${p^4} - 81$
(iii) ${x^4} - {(y + z)^4}$
(iv) ${x^4} - {(x - z)^4}$
(v) ${a^4} - 2{a^2}{b^2} + {b^4}$
Answer
484.5k+ views
Hint:
The given polynomials are of degree four. We can factorise them using the identities in Algebra. Repeated applications may be needed for simplification.
Useful formula:
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
We have to factorise the given equations.
(i) ${a^4} - {b^4}$
We can write it as ${({a^2})^2} - {({b^2})^2}$.
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have, ${({a^2})^2} - {({b^2})^2} = ({a^2} - {b^2})({a^2} + {b^2})$
We can again factorise using the same result.
This gives,
${({a^2})^2} - {({b^2})^2} = (a - b)(a + b)({a^2} + {b^2})$
So we have,
${a^4} - {b^4} = (a - b)(a + b)({a^2} + {b^2})$
(ii) ${p^4} - 81$
This can be written in the form ${({p^2})^2} - {9^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({p^2})^2} - {9^2} = ({p^2} - 9)({p^2} + 9)$
We can again factorise using the same result for ${p^2} - 9$.
We have ${p^2} - 9 = {p^2} - {3^2}$
This gives,
${({p^2})^2} - {9^2} = (p - 3)(p + 3)({p^2} + 9)$
So we have,
${p^4} - 81 = (p - 3)(p + 3)({p^2} + 9)$
(iii) ${x^4} - {(y + z)^4}$
This expression can be rewritten as ${({x^2})^2} - {({(y + z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = ({x^2} - {(y + z)^2})({x^2} + {(y + z)^2})$
Again we can use the same formula for ${x^2} - {(y + z)^2}$.
We have, ${x^2} - {(y + z)^2} = (x - (y + z))(x + (y + z))$
$ \Rightarrow {x^2} - {(y + z)^2} = (x - y - z)(x + y + z)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {(y + z)^2})$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
We can use this result for ${(y + z)^2}$.
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
So we have,
${x^4} - {(y + z)^4} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
(iv) ${x^4} - {(x - z)^4}$
We can write this as ${({x^2})^2} - {({(x - z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = ({x^2} - {(x - z)^2})({x^2} + {(x - z)^2})$
Again we can use the same formula for ${x^2} - {(x - z)^2}$.
${x^2} - {(x - z)^2} = (x - (x - z))(x + (x - z))$
Simplifying we get,
${x^2} - {(x - z)^2} = (x - x + z)(x + x - z)$
$ \Rightarrow {x^2} - {(x - z)^2} = z(2x - z)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + {(x - z)^2})$
We have, ${(a - b)^2} = {a^2} - 2ab + {b^2}$.
We can use this result for ${(x - z)^2}$.
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + ({x^2} - 2xz + {z^2}))$
Simplifying we get,
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)(2{x^2} - 2xz + {z^2})$
So we have,
${x^4} - {(x - z)^4} = z(2x - z)(2{x^2} - 2xz + {z^2})$
(v) ${a^4} - 2{a^2}{b^2} + {b^4}$
We can write it as ${({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
Comparing these two we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2} - {b^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {[(a - b)(a + b)]^2}$
Note:
When an equation of degree two or more is given, we have to factorise maximum to linear factors. The main identities used are the expansions of ${(a + b)^2},{(a - b)^2}$ and ${a^2} - {b^2}$. In certain questions repeated application of the same result may be needed.
The given polynomials are of degree four. We can factorise them using the identities in Algebra. Repeated applications may be needed for simplification.
Useful formula:
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Complete step by step solution:
We have to factorise the given equations.
(i) ${a^4} - {b^4}$
We can write it as ${({a^2})^2} - {({b^2})^2}$.
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have, ${({a^2})^2} - {({b^2})^2} = ({a^2} - {b^2})({a^2} + {b^2})$
We can again factorise using the same result.
This gives,
${({a^2})^2} - {({b^2})^2} = (a - b)(a + b)({a^2} + {b^2})$
So we have,
${a^4} - {b^4} = (a - b)(a + b)({a^2} + {b^2})$
(ii) ${p^4} - 81$
This can be written in the form ${({p^2})^2} - {9^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({p^2})^2} - {9^2} = ({p^2} - 9)({p^2} + 9)$
We can again factorise using the same result for ${p^2} - 9$.
We have ${p^2} - 9 = {p^2} - {3^2}$
This gives,
${({p^2})^2} - {9^2} = (p - 3)(p + 3)({p^2} + 9)$
So we have,
${p^4} - 81 = (p - 3)(p + 3)({p^2} + 9)$
(iii) ${x^4} - {(y + z)^4}$
This expression can be rewritten as ${({x^2})^2} - {({(y + z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = ({x^2} - {(y + z)^2})({x^2} + {(y + z)^2})$
Again we can use the same formula for ${x^2} - {(y + z)^2}$.
We have, ${x^2} - {(y + z)^2} = (x - (y + z))(x + (y + z))$
$ \Rightarrow {x^2} - {(y + z)^2} = (x - y - z)(x + y + z)$
This gives,
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {(y + z)^2})$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
We can use this result for ${(y + z)^2}$.
${({x^2})^2} - {({(y + z)^2})^2} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
So we have,
${x^4} - {(y + z)^4} = (x - y - z)(x + y + z)({x^2} + {y^2} + 2yz + {z^2})$
(iv) ${x^4} - {(x - z)^4}$
We can write this as ${({x^2})^2} - {({(x - z)^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = ({x^2} - {(x - z)^2})({x^2} + {(x - z)^2})$
Again we can use the same formula for ${x^2} - {(x - z)^2}$.
${x^2} - {(x - z)^2} = (x - (x - z))(x + (x - z))$
Simplifying we get,
${x^2} - {(x - z)^2} = (x - x + z)(x + x - z)$
$ \Rightarrow {x^2} - {(x - z)^2} = z(2x - z)$
This gives,
${({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + {(x - z)^2})$
We have, ${(a - b)^2} = {a^2} - 2ab + {b^2}$.
We can use this result for ${(x - z)^2}$.
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)({x^2} + ({x^2} - 2xz + {z^2}))$
Simplifying we get,
$ \Rightarrow {({x^2})^2} - {({(x - z)^2})^2} = z(2x - z)(2{x^2} - 2xz + {z^2})$
So we have,
${x^4} - {(x - z)^4} = z(2x - z)(2{x^2} - 2xz + {z^2})$
(v) ${a^4} - 2{a^2}{b^2} + {b^4}$
We can write it as ${({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2})^2} - 2{a^2}{b^2} + {({b^2})^2}$
We have, ${(a + b)^2} = {a^2} + 2ab + {b^2}$.
Comparing these two we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {({a^2} - {b^2})^2}$
For any $a,b$ we have, ${a^2} - {b^2} = (a - b)(a + b)$
So we have,
${a^4} - 2{a^2}{b^2} + {b^4} = {[(a - b)(a + b)]^2}$
Note:
When an equation of degree two or more is given, we have to factorise maximum to linear factors. The main identities used are the expansions of ${(a + b)^2},{(a - b)^2}$ and ${a^2} - {b^2}$. In certain questions repeated application of the same result may be needed.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

What is the feminine gender of a stag class 8 english CBSE

Give me the opposite gender of Duck class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE
