
Factorise: $\dfrac{{8{a^3}}}{{27}} - \dfrac{{{b^3}}}{8}$
Answer
581.1k+ views
Hint:
It is given in the question that we have to Factorise $\dfrac{{8{a^3}}}{{27}} - \dfrac{{{b^3}}}{8}$
Firstly, we will write $\dfrac{{8{a^3}}}{{27}}$ as ${\left( {\dfrac{{2a}}{3}} \right)^3}$ and $\dfrac{{{b^3}}}{8}$ as ${\left( {\dfrac{b}{2}} \right)^3}$
After that, by applying formula $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ we will get our answer.
Complete step by step solution:
It is given in the question that we have to Factorise $\dfrac{{8{a^3}}}{{27}} - \dfrac{{{b^3}}}{8}$
$ = \dfrac{{8{a^3}}}{{27}} - \dfrac{{{b^3}}}{8}$
We can write $\dfrac{{8{a^3}}}{{27}}$ as ${\left( {\dfrac{{2a}}{3}} \right)^3}$ and $\dfrac{{{b^3}}}{8}$ as ${\left( {\dfrac{b}{2}} \right)^3}$
Now, put this in the above equation.
$ = {\left( {\dfrac{{2a}}{3}} \right)^3} - {\left( {\dfrac{b}{2}} \right)^3}$
Now, using formula of $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ in above equation we get,
$ = \left( {\dfrac{{2a}}{3} - \dfrac{b}{2}} \right)\left[ {{{\left( {\dfrac{{2a}}{3}} \right)}^2} + \left( {\dfrac{{2a}}{3}} \right) \times \left( {\dfrac{b}{2}} \right) + {{\left( {\dfrac{b}{2}} \right)}^2}} \right]$
$ = \left( {\dfrac{{2a}}{3} - \dfrac{b}{2}} \right)\left[ {\dfrac{{4{a^2}}}{9} + \dfrac{{ab}}{3} + \dfrac{{{b^2}}}{4}} \right]$
Note:
Some additional properties:
1) $\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)$
2) ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)$
3) ${\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)$
It is given in the question that we have to Factorise $\dfrac{{8{a^3}}}{{27}} - \dfrac{{{b^3}}}{8}$
Firstly, we will write $\dfrac{{8{a^3}}}{{27}}$ as ${\left( {\dfrac{{2a}}{3}} \right)^3}$ and $\dfrac{{{b^3}}}{8}$ as ${\left( {\dfrac{b}{2}} \right)^3}$
After that, by applying formula $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ we will get our answer.
Complete step by step solution:
It is given in the question that we have to Factorise $\dfrac{{8{a^3}}}{{27}} - \dfrac{{{b^3}}}{8}$
$ = \dfrac{{8{a^3}}}{{27}} - \dfrac{{{b^3}}}{8}$
We can write $\dfrac{{8{a^3}}}{{27}}$ as ${\left( {\dfrac{{2a}}{3}} \right)^3}$ and $\dfrac{{{b^3}}}{8}$ as ${\left( {\dfrac{b}{2}} \right)^3}$
Now, put this in the above equation.
$ = {\left( {\dfrac{{2a}}{3}} \right)^3} - {\left( {\dfrac{b}{2}} \right)^3}$
Now, using formula of $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ in above equation we get,
$ = \left( {\dfrac{{2a}}{3} - \dfrac{b}{2}} \right)\left[ {{{\left( {\dfrac{{2a}}{3}} \right)}^2} + \left( {\dfrac{{2a}}{3}} \right) \times \left( {\dfrac{b}{2}} \right) + {{\left( {\dfrac{b}{2}} \right)}^2}} \right]$
$ = \left( {\dfrac{{2a}}{3} - \dfrac{b}{2}} \right)\left[ {\dfrac{{4{a^2}}}{9} + \dfrac{{ab}}{3} + \dfrac{{{b^2}}}{4}} \right]$
Note:
Some additional properties:
1) $\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)$
2) ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)$
3) ${\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)$
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


