
How do you factor the trinomial ${{m}^{2}}+12m+32$?
Answer
549.3k+ views
Hint: We use both the grouping method and vanishing method to solve the problem. We take common terms out to form the multiplied forms. In the case of the vanishing method, we use the value of x which gives the polynomial value 0.
Complete step-by-step solution:
We apply the middle-term factoring or grouping to factorize the polynomial.
Factorizing a polynomial by grouping is to find the pairs which on taking their common divisor out, give the same remaining number.
In the case of ${{m}^{2}}+12m+32$, we break the middle term $12m$ into two parts of $4m$ and $8m$.
So, ${{m}^{2}}+12m+32={{m}^{2}}+4m+8m+32$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.
Here multiplication for both cases gives $32{{m}^{2}}$. The grouping will be done for ${{m}^{2}}+4m$ and $8m+32$.
We try to take the common numbers out.
For ${{m}^{2}}+4m$, we take m and get $m\left( m+4 \right)$.
For $8m+32$, we take 8 and get $8\left( m+4 \right)$.
The equation becomes ${{m}^{2}}+12m+32={{m}^{2}}+4m+8m+32=m\left( m+4 \right)+8\left( m+4 \right)$.
Both the terms have $\left( m+4 \right)$ in common. We take that term again and get
$\begin{align}
& {{m}^{2}}+12m+32 \\
& =m\left( m+4 \right)+8\left( m+4 \right) \\
& =\left( m+4 \right)\left( m+8 \right) \\
\end{align}$
Therefore, the factorisation of ${{m}^{2}}+12m+32$ is $\left( m+4 \right)\left( m+8 \right)$.
Note: We find the value of x for which the function $f\left( m \right)={{m}^{2}}+12m+32=0$. We can see $f\left( -4 \right)={{\left( -4 \right)}^{2}}+12\times \left( -4 \right)+32=16-48+32=0$. So, the root of the $f\left( m \right)={{m}^{2}}+12m+32$ will be the function $\left( m+4 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$. Now, $f\left( m \right)={{m}^{2}}+12m+32=\left( m+4 \right)\left( m+8 \right)$. We can also do the same process for $\left( m+8 \right)$.
Complete step-by-step solution:
We apply the middle-term factoring or grouping to factorize the polynomial.
Factorizing a polynomial by grouping is to find the pairs which on taking their common divisor out, give the same remaining number.
In the case of ${{m}^{2}}+12m+32$, we break the middle term $12m$ into two parts of $4m$ and $8m$.
So, ${{m}^{2}}+12m+32={{m}^{2}}+4m+8m+32$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.
Here multiplication for both cases gives $32{{m}^{2}}$. The grouping will be done for ${{m}^{2}}+4m$ and $8m+32$.
We try to take the common numbers out.
For ${{m}^{2}}+4m$, we take m and get $m\left( m+4 \right)$.
For $8m+32$, we take 8 and get $8\left( m+4 \right)$.
The equation becomes ${{m}^{2}}+12m+32={{m}^{2}}+4m+8m+32=m\left( m+4 \right)+8\left( m+4 \right)$.
Both the terms have $\left( m+4 \right)$ in common. We take that term again and get
$\begin{align}
& {{m}^{2}}+12m+32 \\
& =m\left( m+4 \right)+8\left( m+4 \right) \\
& =\left( m+4 \right)\left( m+8 \right) \\
\end{align}$
Therefore, the factorisation of ${{m}^{2}}+12m+32$ is $\left( m+4 \right)\left( m+8 \right)$.
Note: We find the value of x for which the function $f\left( m \right)={{m}^{2}}+12m+32=0$. We can see $f\left( -4 \right)={{\left( -4 \right)}^{2}}+12\times \left( -4 \right)+32=16-48+32=0$. So, the root of the $f\left( m \right)={{m}^{2}}+12m+32$ will be the function $\left( m+4 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$. Now, $f\left( m \right)={{m}^{2}}+12m+32=\left( m+4 \right)\left( m+8 \right)$. We can also do the same process for $\left( m+8 \right)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

