
f $a + b + c = 2s$ , then $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$ is equal to
A. ${a^2} + {b^2} + {c^2}$
B. 0
C. 1
D. 2
Answer
589.2k+ views
Hint: Expand the equation $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$. And substitute the value of ‘s’ as $a + b + c = 2s$ where ever necessary in the solution to get the value.
Complete step-by-step solution:
We are given $a + b + c = 2s$
We have to find the value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Expand the above polynomial
$ = \dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Use the formula of ${\left( {a - b} \right)^2}$
$
= \dfrac{{\left( {{s^2} - 2sa + {a^2}} \right) + \left( {{s^2} - 2sb + {b^2}} \right) + \left( {{s^2} - 2sc + {c^2}} \right) + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because {{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right) \\
= \dfrac{{{s^2} - 2sa + {a^2} + {s^2} - 2sb + {b^2} + {s^2} - 2sc + {c^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
$
And then put all the similar terms together
$ = \dfrac{{4{s^2} - 2sa - 2sb - 2sc + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
Take out ‘2s’ common
$ = \dfrac{{4{s^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
As given in the question, $a + b + c = 2s$, substitute the value 2s in the above equation
After substituting the value, the above equation becomes
$
\to \dfrac{{4{s^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{4{s^2} - 2s\left( {2s} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because a + b + c = 2s} \right) \\
= \dfrac{{4{s^2} - 4{s^2} + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= 1 \\
$
The value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$ is 1.
Therefore, from among the options given in the question option c is correct, which is 1.
Additional information: Substitution method is used here to solve the problem. The method of solving “by substitution” is solving one of the equations (you choose which one) for one of the variables (you choose which one), and then plugging this back into the other equation, “substituting” for the chosen variable and solving for the other variable.
Note: Another approach to the above problem
We have to find the value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Expand the above polynomial
$ = \dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Use the formula of ${\left( {a - b} \right)^2}$
$
= \dfrac{{\left( {{s^2} - 2sa + {a^2}} \right) + \left( {{s^2} - 2sb + {b^2}} \right) + \left( {{s^2} - 2sc + {c^2}} \right) + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because {{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right) \\
= \dfrac{{{s^2} - 2sa + {a^2} + {s^2} - 2sb + {b^2} + {s^2} - 2sc + {c^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
$
And then put all the similar terms together
$ = \dfrac{{4{s^2} - 2sa - 2sb - 2sc + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
Take out ‘2s’ common
$ = \dfrac{{4{s^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
As given in the question, $a + b + c = 2s$, substitute the value of ‘2s’ in the above equation
After substituting the value, the above equation becomes
$
\to \dfrac{{{{\left( {2s} \right)}^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{{{\left( {a + b + c} \right)}^2} - \left( {a + b + c} \right)\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because a + b + c = 2s} \right) \\
= \dfrac{{{{\left( {a + b + c} \right)}^2} - {{\left( {a + b + c} \right)}^2} + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= 1 \\
$
The value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$ is 1.
Complete step-by-step solution:
We are given $a + b + c = 2s$
We have to find the value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Expand the above polynomial
$ = \dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Use the formula of ${\left( {a - b} \right)^2}$
$
= \dfrac{{\left( {{s^2} - 2sa + {a^2}} \right) + \left( {{s^2} - 2sb + {b^2}} \right) + \left( {{s^2} - 2sc + {c^2}} \right) + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because {{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right) \\
= \dfrac{{{s^2} - 2sa + {a^2} + {s^2} - 2sb + {b^2} + {s^2} - 2sc + {c^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
$
And then put all the similar terms together
$ = \dfrac{{4{s^2} - 2sa - 2sb - 2sc + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
Take out ‘2s’ common
$ = \dfrac{{4{s^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
As given in the question, $a + b + c = 2s$, substitute the value 2s in the above equation
After substituting the value, the above equation becomes
$
\to \dfrac{{4{s^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{4{s^2} - 2s\left( {2s} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because a + b + c = 2s} \right) \\
= \dfrac{{4{s^2} - 4{s^2} + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= 1 \\
$
The value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$ is 1.
Therefore, from among the options given in the question option c is correct, which is 1.
Additional information: Substitution method is used here to solve the problem. The method of solving “by substitution” is solving one of the equations (you choose which one) for one of the variables (you choose which one), and then plugging this back into the other equation, “substituting” for the chosen variable and solving for the other variable.
Note: Another approach to the above problem
We have to find the value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Expand the above polynomial
$ = \dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$
Use the formula of ${\left( {a - b} \right)^2}$
$
= \dfrac{{\left( {{s^2} - 2sa + {a^2}} \right) + \left( {{s^2} - 2sb + {b^2}} \right) + \left( {{s^2} - 2sc + {c^2}} \right) + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because {{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right) \\
= \dfrac{{{s^2} - 2sa + {a^2} + {s^2} - 2sb + {b^2} + {s^2} - 2sc + {c^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}} \\
$
And then put all the similar terms together
$ = \dfrac{{4{s^2} - 2sa - 2sb - 2sc + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
Take out ‘2s’ common
$ = \dfrac{{4{s^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}}$
As given in the question, $a + b + c = 2s$, substitute the value of ‘2s’ in the above equation
After substituting the value, the above equation becomes
$
\to \dfrac{{{{\left( {2s} \right)}^2} - 2s\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{{{\left( {a + b + c} \right)}^2} - \left( {a + b + c} \right)\left( {a + b + c} \right) + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
\left( {\because a + b + c = 2s} \right) \\
= \dfrac{{{{\left( {a + b + c} \right)}^2} - {{\left( {a + b + c} \right)}^2} + {a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= \dfrac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2}}} \\
= 1 \\
$
The value of $\dfrac{{{{\left( {s - a} \right)}^2} + {{\left( {s - b} \right)}^2} + {{\left( {s - c} \right)}^2} + {s^2}}}{{{a^2} + {b^2} + {c^2}}}$ is 1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

