
What is the expression $\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}$ is equal to
A. $\sin 2A$
B. $\cos 2A$
C. $\tan 2A$
D. $\cot 2A$
Answer
505.8k+ views
Hint: At first, we replace ${{\tan }^{2}}\left( {{45}^{\circ }}-A \right)$ with \[\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)}\] . Then, we multiply the numerator and denominator by \[{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)\] and get \[\dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)+{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}\] . We then use the formula \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] to replace \[{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)+{{\sin }^{2}}\left( {{45}^{\circ }}-A \right) \] by $1$ . We then use the formula \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta \] to replace \[{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)\] by \[\cos 2\left( {{45}^{\circ }}-A \right)\] . Rewriting \[\cos 2\left( {{45}^{\circ }}-A \right)\] as \[\cos \left( {{90}^{\circ }}-2A \right)\] and using the formula \[\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta \] , we get the final answer.
Complete step by step solution:
The given expression that we have is,
$\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}$
We know the formula that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ . Using this in the above expression, we get,
\[= \dfrac{1-{{\left\{ \dfrac{\sin \left( {{45}^{\circ }}-A \right)}{\cos \left( {{45}^{\circ }}-A \right)} \right\}}^{2}}}{1+{{\left\{ \dfrac{\sin \left( {{45}^{\circ }}-A \right)}{\cos \left( {{45}^{\circ }}-A \right)} \right\}}^{2}}}\]
The above expression can be simplified as,
\[= \dfrac{1-\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)}}{1+\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)}}\]
Multiplying the numerator and denominator by \[{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)\] , we get,
\[= \dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)+{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}\]
Now, we know the formula that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] . Using this in the above expression, we get,
\[= \dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{1}\]
Now, we also know the formula that \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta \] . Using this in the above expression, we get,
\[= \cos 2\left( {{45}^{\circ }}-A \right)\]
Multiplying $2$ inside the bracket, we get,
\[= \cos \left( {{90}^{\circ }}-2A \right)\]
We know the formula that \[\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta \] . Using this in the above expression, we get,
\[= \sin 2A\]
Thus, we can conclude that the value of the expression $\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}$ is $\sin 2A$ which is option A.
Note: Finding the value of the expression by step-by-step solving is necessary and useful in understanding the concepts and also in subjective questions. But for rapid tests like competitive exams, where only the final answer is required, we can check by putting A as ${{45}^{\circ }}$ . This gives the expression as,
$\Rightarrow \dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-{{45}^{\circ }} \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-{{45}^{\circ }} \right)}=\dfrac{1-0}{1+0}=1$ .
Now, putting A as ${{45}^{\circ }}$ in the first option, we get,
$\sin \left( 2\times {{45}^{\circ }} \right)=\sin {{90}^{\circ }}=1$
Putting A as ${{45}^{\circ }}$ in the other options, we do not get $1$ as the answer. So, the first option is the correct option.
Complete step by step solution:
The given expression that we have is,
$\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}$
We know the formula that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ . Using this in the above expression, we get,
\[= \dfrac{1-{{\left\{ \dfrac{\sin \left( {{45}^{\circ }}-A \right)}{\cos \left( {{45}^{\circ }}-A \right)} \right\}}^{2}}}{1+{{\left\{ \dfrac{\sin \left( {{45}^{\circ }}-A \right)}{\cos \left( {{45}^{\circ }}-A \right)} \right\}}^{2}}}\]
The above expression can be simplified as,
\[= \dfrac{1-\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)}}{1+\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)}}\]
Multiplying the numerator and denominator by \[{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)\] , we get,
\[= \dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)+{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}\]
Now, we know the formula that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] . Using this in the above expression, we get,
\[= \dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{1}\]
Now, we also know the formula that \[{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta \] . Using this in the above expression, we get,
\[= \cos 2\left( {{45}^{\circ }}-A \right)\]
Multiplying $2$ inside the bracket, we get,
\[= \cos \left( {{90}^{\circ }}-2A \right)\]
We know the formula that \[\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta \] . Using this in the above expression, we get,
\[= \sin 2A\]
Thus, we can conclude that the value of the expression $\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}$ is $\sin 2A$ which is option A.
Note: Finding the value of the expression by step-by-step solving is necessary and useful in understanding the concepts and also in subjective questions. But for rapid tests like competitive exams, where only the final answer is required, we can check by putting A as ${{45}^{\circ }}$ . This gives the expression as,
$\Rightarrow \dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-{{45}^{\circ }} \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-{{45}^{\circ }} \right)}=\dfrac{1-0}{1+0}=1$ .
Now, putting A as ${{45}^{\circ }}$ in the first option, we get,
$\sin \left( 2\times {{45}^{\circ }} \right)=\sin {{90}^{\circ }}=1$
Putting A as ${{45}^{\circ }}$ in the other options, we do not get $1$ as the answer. So, the first option is the correct option.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

