
Express the given complex number in the form \[a+ib\]: \[\left( 5i \right)(-\dfrac{3}{5}i)\].
Answer
506.7k+ views
Hint: You need to know the rules for the algebra of complex numbers and the behaviour of iota\[\left( i \right)\] when raised to a certain power in order to solve this question.
Complete step by step solution:
A complex number is a number with two parts: Real and imaginary parts. General form of the complex number is:
\[a+ib\]
Where a is the real part and b is the imaginary part.
Iota \[\left( i \right)\] is defined as the square root of \[-1\].
\[i=\sqrt{-1}\]
A complex number has two parts as mentioned above and either of them can be zero. So all real numbers are complex numbers and all imaginary numbers are also complex numbers.
Let’s see how does the iota \[\left( i \right)\] behave when raised to power,
\[i=\sqrt{-1}\]
\[\begin{align}
& {{i}^{0}}=1 \\
& {{i}^{1}}=i \\
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
& {{i}^{4}}=1 \\
\end{align}\]
Clearly, we can see the behaviour of \[i\] and the pattern repeats itself in a cycle of four.
Therefore, we can generalise it to
\[\begin{align}
& {{i}^{4k}}=1 \\
& {{i}^{4k+1}}=i \\
& {{i}^{4k+2}}=-1 \\
& {{i}^{4k+3}}=-i \\
\end{align}\]
Now, let’s come to our question,
Given: \[\left( 5i \right)(-\dfrac{3}{5}i)\]
The multiplication is done in the same way as done in the real numbers. Multiply the real number with the real number and imaginary number with the imaginary number.
\[5\times \dfrac{-3}{5}\times i\times i=-3{{i}^{2}}=3=3+0i\] (\[\because \]\[{{i}^{2}}=-1\] )
We can compare it with the general form of complex numbers. It gives that a\[=\]\[3\]and b\[=0\].
Therefore, \[\left( 5i \right)(-\dfrac{3}{5}i)\] $=3+0i$. It means that the imaginary part of this complex number is zero and it is a purely real number equal to \[3\].
Note:
If the real part of a complex number is zero, it is called a purely imaginary number. For example, \[2i,-9i,\dfrac{5}{3}i\] and if the imaginary part of a complex number is zero, it is called a purely real number as seen in the above solution.
Complete step by step solution:
A complex number is a number with two parts: Real and imaginary parts. General form of the complex number is:
\[a+ib\]
Where a is the real part and b is the imaginary part.
Iota \[\left( i \right)\] is defined as the square root of \[-1\].
\[i=\sqrt{-1}\]
A complex number has two parts as mentioned above and either of them can be zero. So all real numbers are complex numbers and all imaginary numbers are also complex numbers.
Let’s see how does the iota \[\left( i \right)\] behave when raised to power,
\[i=\sqrt{-1}\]
\[\begin{align}
& {{i}^{0}}=1 \\
& {{i}^{1}}=i \\
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
& {{i}^{4}}=1 \\
\end{align}\]
Clearly, we can see the behaviour of \[i\] and the pattern repeats itself in a cycle of four.
Therefore, we can generalise it to
\[\begin{align}
& {{i}^{4k}}=1 \\
& {{i}^{4k+1}}=i \\
& {{i}^{4k+2}}=-1 \\
& {{i}^{4k+3}}=-i \\
\end{align}\]
Now, let’s come to our question,
Given: \[\left( 5i \right)(-\dfrac{3}{5}i)\]
The multiplication is done in the same way as done in the real numbers. Multiply the real number with the real number and imaginary number with the imaginary number.
\[5\times \dfrac{-3}{5}\times i\times i=-3{{i}^{2}}=3=3+0i\] (\[\because \]\[{{i}^{2}}=-1\] )
We can compare it with the general form of complex numbers. It gives that a\[=\]\[3\]and b\[=0\].
Therefore, \[\left( 5i \right)(-\dfrac{3}{5}i)\] $=3+0i$. It means that the imaginary part of this complex number is zero and it is a purely real number equal to \[3\].
Note:
If the real part of a complex number is zero, it is called a purely imaginary number. For example, \[2i,-9i,\dfrac{5}{3}i\] and if the imaginary part of a complex number is zero, it is called a purely real number as seen in the above solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

