Express the following numbers in standard form:
$3908.78$
Answer
233.9k+ views
Hint: Keep a decimal point into one digit and convert others into terms of $10$.
Now in question it is asked to convert the number in standard form,
It is difficult to read numbers like$1202000004240$ or $0.0000042852512$. To make it easy
to read very large and small numbers, we write them in standard form.
So first of all what is standard form,
Standard form is a way of writing down very large or very small numbers
easily.${{10}^{3}}=1000$, so $4\times {{10}^{3}}=4000$ . So $4000$ can be written as$4\times {{10}^{3}}$ . This idea can be used to write even larger numbers down easily in
standard form. Any number that we can write as a decimal number, between $1.0$ and
$10.0$, multiplied by a power of $10$, is said to be in standard form.
Standard form in Math is mentioned for basically decimal numbers, equations, polynomials,
linear equations, etc. Its correct definition could be explained better in terms of decimal
numbers and following certain rules.
As we know, the decimal numbers are the simplified form of fractions. Some fractions give
decimal numbers which have numbers after decimal in thousandths, hundredths or tenths
place. But there are some fractions, which gives a big decimal number.
To represent such big numbers, we use such simpler forms, which is also stated as Scientific
notation.
Let us take an example $43333.21$
So we can write $43333.21=4.333321\times {{10}^{4}}$……..(1)
In the (1) we can see it, So $4.333321\times {{10}^{4}}$is standard form of $43333.21$.
So in this way we can write the digits in standard form.
So generally Standard form is a way of writing down very large or very small numbers easily.
Now for us given number is $3908.78$ ,
So we have to convert $3908.78$ in standard form,
Multiplying and dividing by 100 to $3908.78$, We get
$=\dfrac{3908.78\times 100}{100}=\dfrac{390878}{100}$
Now simplifying it We get
$=\dfrac{3.90878\times {{10}^{5}}}{100}=\dfrac{3.90878\times {{10}^{5}}}{{{10}^{2}}}$…… (2)
Now we know the property that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$,
So using the above property in (2) We get,
$\begin{align}
& =\dfrac{3.90878\times {{10}^{5}}}{{{10}^{2}}}=3.90878\times \dfrac{{{10}^{5}}}{{{10}^{2}}}=3.90878\times {{10}^{5-2}} \\
& =3.90878\times {{10}^{3}} \\
\end{align}$
So $3.90878\times {{10}^{3}}$ is standard form of $3908.78$.
So we have got the standard form of $3908.78$ which is $3.90878\times {{10}^{3}}$.
Hence proved.
$3.90878\times {{10}^{3}}$ is standard form of $3908.78$ is the answer.
Note: So basically don’t jumble while converting the number. Such as $3908.78$ to $3.90878\times {{10}^{3}}$. Use the property accordingly Such as I had used this property
$\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$. Remember that the properties are used according
to the problem.
Now in question it is asked to convert the number in standard form,
It is difficult to read numbers like$1202000004240$ or $0.0000042852512$. To make it easy
to read very large and small numbers, we write them in standard form.
So first of all what is standard form,
Standard form is a way of writing down very large or very small numbers
easily.${{10}^{3}}=1000$, so $4\times {{10}^{3}}=4000$ . So $4000$ can be written as$4\times {{10}^{3}}$ . This idea can be used to write even larger numbers down easily in
standard form. Any number that we can write as a decimal number, between $1.0$ and
$10.0$, multiplied by a power of $10$, is said to be in standard form.
Standard form in Math is mentioned for basically decimal numbers, equations, polynomials,
linear equations, etc. Its correct definition could be explained better in terms of decimal
numbers and following certain rules.
As we know, the decimal numbers are the simplified form of fractions. Some fractions give
decimal numbers which have numbers after decimal in thousandths, hundredths or tenths
place. But there are some fractions, which gives a big decimal number.
To represent such big numbers, we use such simpler forms, which is also stated as Scientific
notation.
Let us take an example $43333.21$
So we can write $43333.21=4.333321\times {{10}^{4}}$……..(1)
In the (1) we can see it, So $4.333321\times {{10}^{4}}$is standard form of $43333.21$.
So in this way we can write the digits in standard form.
So generally Standard form is a way of writing down very large or very small numbers easily.
Now for us given number is $3908.78$ ,
So we have to convert $3908.78$ in standard form,
Multiplying and dividing by 100 to $3908.78$, We get
$=\dfrac{3908.78\times 100}{100}=\dfrac{390878}{100}$
Now simplifying it We get
$=\dfrac{3.90878\times {{10}^{5}}}{100}=\dfrac{3.90878\times {{10}^{5}}}{{{10}^{2}}}$…… (2)
Now we know the property that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$,
So using the above property in (2) We get,
$\begin{align}
& =\dfrac{3.90878\times {{10}^{5}}}{{{10}^{2}}}=3.90878\times \dfrac{{{10}^{5}}}{{{10}^{2}}}=3.90878\times {{10}^{5-2}} \\
& =3.90878\times {{10}^{3}} \\
\end{align}$
So $3.90878\times {{10}^{3}}$ is standard form of $3908.78$.
So we have got the standard form of $3908.78$ which is $3.90878\times {{10}^{3}}$.
Hence proved.
$3.90878\times {{10}^{3}}$ is standard form of $3908.78$ is the answer.
Note: So basically don’t jumble while converting the number. Such as $3908.78$ to $3.90878\times {{10}^{3}}$. Use the property accordingly Such as I had used this property
$\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$. Remember that the properties are used according
to the problem.
Last updated date: 06th Jun 2023
•
Total views: 233.9k
•
Views today: 3.90k
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
