
Express the factors of $\left( {{x}^{2}}-3x+5 \right)\left( {{x}^{2}}+3x+5 \right)$ as a difference of two squares.
Answer
585.9k+ views
Hint: We find the zeroes(say $\alpha ,\beta $) of the both the quadratic polynomials $\left( {{x}^{2}}-3x+5 \right)$ and $\left( {{x}^{2}}+3x+5 \right)$ using the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and express each of them in the factorized from $\left( x-\alpha \right)\left( x-\beta \right)$. We use the algebraic identity $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$ as difference of two squares. \[\]
Complete step by step answer:
We know that if a quadratic equation in general form $a{{x}^{2}}+bx+c=0,a\ne 0$ has roots $\alpha ,\beta $ then we can express the quadratic polynomial in $a{{x}^{2}}+bx+c=0$ as
\[a{{x}^{2}}+bx+c=\left( x-\alpha \right)\left( x-\beta \right)\]
The roots of the quadratic equation are obtained by factorization when the discriminant $D={{b}^{2}}-4ac>0$. If the discriminant $D={{b}^{2}}-4ac<0$ then we get complex roots of the quadratic equation which we can find directly using the formula
\[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a},\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]
Let us denote the given expression of a polynomial in the question as $p\left( x \right)$ . So we have
\[p\left( x \right)=\left( {{x}^{2}}-3x+5 \right)\left( {{x}^{2}}+3x+5 \right)\]
We see that the given expression $p\left( x \right)$ has two factors $\left( {{x}^{2}}-3x+5 \right)$ and $\left( {{x}^{2}}+3x+5 \right)$. We denote ${{p}_{1}}\left( x \right)={{x}^{2}}-3x+5$ and ${{p}_{2}}\left( x \right)={{x}^{2}}+3x+5$.
The discriminant for first quadratic factor ${{p}_{1}}\left( x \right)={{x}^{2}}-3x+5=0$ is $D={{\left( -3 \right)}^{2}}-4\cdot 1\cdot 5=-11<0$. So we find the roots of ${{p}_{1}}\left( x \right)=0$ using the quadratic formula directly and get the roots ${{\alpha }_{1}},{{\beta }_{1}}$ as,
\[{{\alpha }_{1}}=\dfrac{3+\sqrt{-11}}{2},{{\beta }_{1}}=\dfrac{3-\sqrt{-11}}{2}\]
So we can express ${{p}_{1}}\left( x \right)$ as
\[{{p}_{1}}\left( x \right)=\left( x-{{\alpha }_{1}} \right)\left( x-{{\beta }_{1}} \right)=\left( x-\dfrac{3+\sqrt{-11}}{2} \right)\left( x-\dfrac{3-\sqrt{-11}}{2} \right)...(1)\]
The discriminant for the second quadratic factor ${{p}_{2}}\left( x \right)={{x}^{2}}+3x+5=0$ is $D={{\left( 3 \right)}^{2}}-4\cdot 1\cdot 5=-11<0$. So we find the roots of ${{p}_{2}}\left( x \right)=0$ using the quadratic formula directly and get the roots ${{\alpha }_{2}},{{\beta }_{2}}$ as,
\[{{\alpha }_{2}}=\dfrac{-3+\sqrt{-11}}{2},{{\beta }_{2}}=\dfrac{-3-\sqrt{-11}}{2}\]
So we can express ${{p}_{2}}\left( x \right)$ as
\[\begin{align}
& {{p}_{1}}\left( x \right)=\left( x-{{\alpha }_{2}} \right)\left( x-{{\beta }_{2}} \right)=\left( x-\dfrac{\left( -3+\sqrt{-11} \right)}{2} \right)\left( x-\dfrac{\left( -3-\sqrt{-11} \right)}{2} \right) \\
& \Rightarrow {{p}_{2}}\left( x \right)=\left( x+\dfrac{3-\sqrt{-11}}{2} \right)\left( x+\dfrac{3+\sqrt{-11}}{2} \right)...(2) \\
\end{align}\]
We replace the obtained values for ${{p}_{1}}\left( x \right)$ from equation (1) and ${{p}_{2}}\left( x \right)$ from equation (2) in $p\left( x \right)$. So we have
\[\begin{align}
& p\left( x \right)={{p}_{1}}\left( x \right){{p}_{2}}\left( x \right) \\
& \Rightarrow p\left( x \right)=\left( x-\dfrac{3+\sqrt{-11}}{2} \right)\left( x-\dfrac{3-\sqrt{-11}}{2} \right)\left( x+\dfrac{3-\sqrt{-11}}{2} \right)\left( x+\dfrac{3+\sqrt{-11}}{2} \right) \\
& \Rightarrow p\left( x \right)=\left( x-\dfrac{3+\sqrt{-11}}{2} \right)\left( x+\dfrac{3+\sqrt{-11}}{2} \right)\left( x+\dfrac{3-\sqrt{-11}}{2} \right)\left( x-\dfrac{3-\sqrt{-11}}{2} \right) \\
\end{align}\]
Let us use the algebraic identity of $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$ and proceed
\[\begin{align}
& \Rightarrow p\left( x \right)=\left( {{x}^{2}}-{{\left( \dfrac{3+\sqrt{-11}}{2} \right)}^{2}} \right)\left( {{x}^{2}}-{{\left( \dfrac{3-\sqrt{-11}}{2} \right)}^{2}} \right) \\
& \Rightarrow p\left( x \right)=\left( {{\left( x \right)}^{2}}-{{\left( \dfrac{3+i\sqrt{11}}{2} \right)}^{2}} \right)\left( {{\left( x \right)}^{2}}-{{\left( \dfrac{3-i\sqrt{11}}{2} \right)}^{2}} \right) \\
\end{align}\]
The above result is expressed as difference of two squares where $i=\sqrt{-1}$ is an imaginary number.\[\]
Note:
We note that the roots equal when $D=0$ . The roots are distinct when . $D>0,D\ne 0$The roots are rational when $D$ is a perfect square. The roots are integral and distinct when $D>0,D\ne 0$, $D$ is a perfect square and $2a$ divides $D$ exactly. The pair of values $\dfrac{3+11i}{2},\dfrac{3-11i}{2}$ are called conjugates.
Complete step by step answer:
We know that if a quadratic equation in general form $a{{x}^{2}}+bx+c=0,a\ne 0$ has roots $\alpha ,\beta $ then we can express the quadratic polynomial in $a{{x}^{2}}+bx+c=0$ as
\[a{{x}^{2}}+bx+c=\left( x-\alpha \right)\left( x-\beta \right)\]
The roots of the quadratic equation are obtained by factorization when the discriminant $D={{b}^{2}}-4ac>0$. If the discriminant $D={{b}^{2}}-4ac<0$ then we get complex roots of the quadratic equation which we can find directly using the formula
\[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a},\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]
Let us denote the given expression of a polynomial in the question as $p\left( x \right)$ . So we have
\[p\left( x \right)=\left( {{x}^{2}}-3x+5 \right)\left( {{x}^{2}}+3x+5 \right)\]
We see that the given expression $p\left( x \right)$ has two factors $\left( {{x}^{2}}-3x+5 \right)$ and $\left( {{x}^{2}}+3x+5 \right)$. We denote ${{p}_{1}}\left( x \right)={{x}^{2}}-3x+5$ and ${{p}_{2}}\left( x \right)={{x}^{2}}+3x+5$.
The discriminant for first quadratic factor ${{p}_{1}}\left( x \right)={{x}^{2}}-3x+5=0$ is $D={{\left( -3 \right)}^{2}}-4\cdot 1\cdot 5=-11<0$. So we find the roots of ${{p}_{1}}\left( x \right)=0$ using the quadratic formula directly and get the roots ${{\alpha }_{1}},{{\beta }_{1}}$ as,
\[{{\alpha }_{1}}=\dfrac{3+\sqrt{-11}}{2},{{\beta }_{1}}=\dfrac{3-\sqrt{-11}}{2}\]
So we can express ${{p}_{1}}\left( x \right)$ as
\[{{p}_{1}}\left( x \right)=\left( x-{{\alpha }_{1}} \right)\left( x-{{\beta }_{1}} \right)=\left( x-\dfrac{3+\sqrt{-11}}{2} \right)\left( x-\dfrac{3-\sqrt{-11}}{2} \right)...(1)\]
The discriminant for the second quadratic factor ${{p}_{2}}\left( x \right)={{x}^{2}}+3x+5=0$ is $D={{\left( 3 \right)}^{2}}-4\cdot 1\cdot 5=-11<0$. So we find the roots of ${{p}_{2}}\left( x \right)=0$ using the quadratic formula directly and get the roots ${{\alpha }_{2}},{{\beta }_{2}}$ as,
\[{{\alpha }_{2}}=\dfrac{-3+\sqrt{-11}}{2},{{\beta }_{2}}=\dfrac{-3-\sqrt{-11}}{2}\]
So we can express ${{p}_{2}}\left( x \right)$ as
\[\begin{align}
& {{p}_{1}}\left( x \right)=\left( x-{{\alpha }_{2}} \right)\left( x-{{\beta }_{2}} \right)=\left( x-\dfrac{\left( -3+\sqrt{-11} \right)}{2} \right)\left( x-\dfrac{\left( -3-\sqrt{-11} \right)}{2} \right) \\
& \Rightarrow {{p}_{2}}\left( x \right)=\left( x+\dfrac{3-\sqrt{-11}}{2} \right)\left( x+\dfrac{3+\sqrt{-11}}{2} \right)...(2) \\
\end{align}\]
We replace the obtained values for ${{p}_{1}}\left( x \right)$ from equation (1) and ${{p}_{2}}\left( x \right)$ from equation (2) in $p\left( x \right)$. So we have
\[\begin{align}
& p\left( x \right)={{p}_{1}}\left( x \right){{p}_{2}}\left( x \right) \\
& \Rightarrow p\left( x \right)=\left( x-\dfrac{3+\sqrt{-11}}{2} \right)\left( x-\dfrac{3-\sqrt{-11}}{2} \right)\left( x+\dfrac{3-\sqrt{-11}}{2} \right)\left( x+\dfrac{3+\sqrt{-11}}{2} \right) \\
& \Rightarrow p\left( x \right)=\left( x-\dfrac{3+\sqrt{-11}}{2} \right)\left( x+\dfrac{3+\sqrt{-11}}{2} \right)\left( x+\dfrac{3-\sqrt{-11}}{2} \right)\left( x-\dfrac{3-\sqrt{-11}}{2} \right) \\
\end{align}\]
Let us use the algebraic identity of $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$ and proceed
\[\begin{align}
& \Rightarrow p\left( x \right)=\left( {{x}^{2}}-{{\left( \dfrac{3+\sqrt{-11}}{2} \right)}^{2}} \right)\left( {{x}^{2}}-{{\left( \dfrac{3-\sqrt{-11}}{2} \right)}^{2}} \right) \\
& \Rightarrow p\left( x \right)=\left( {{\left( x \right)}^{2}}-{{\left( \dfrac{3+i\sqrt{11}}{2} \right)}^{2}} \right)\left( {{\left( x \right)}^{2}}-{{\left( \dfrac{3-i\sqrt{11}}{2} \right)}^{2}} \right) \\
\end{align}\]
The above result is expressed as difference of two squares where $i=\sqrt{-1}$ is an imaginary number.\[\]
Note:
We note that the roots equal when $D=0$ . The roots are distinct when . $D>0,D\ne 0$The roots are rational when $D$ is a perfect square. The roots are integral and distinct when $D>0,D\ne 0$, $D$ is a perfect square and $2a$ divides $D$ exactly. The pair of values $\dfrac{3+11i}{2},\dfrac{3-11i}{2}$ are called conjugates.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

