
Express ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right), - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$ in the simplest form.
Answer
574.8k+ views
Hint: To solve this question, we will use some basic trigonometric identities such as, $\cos 2x = {\cos ^2}x - {\sin ^2}x$ and $\sin 2x = 2\sin x\cos x$
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

