
Express ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right), - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$ in the simplest form.
Answer
588.6k+ views
Hint: To solve this question, we will use some basic trigonometric identities such as, $\cos 2x = {\cos ^2}x - {\sin ^2}x$ and $\sin 2x = 2\sin x\cos x$
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

