
Express ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right), - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$ in the simplest form.
Answer
575.7k+ views
Hint: To solve this question, we will use some basic trigonometric identities such as, $\cos 2x = {\cos ^2}x - {\sin ^2}x$ and $\sin 2x = 2\sin x\cos x$
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

