
Express ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right), - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$ in the simplest form.
Answer
508.2k+ views
Hint: To solve this question, we will use some basic trigonometric identities such as, $\cos 2x = {\cos ^2}x - {\sin ^2}x$ and $\sin 2x = 2\sin x\cos x$
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Complete step-by-step answer:
We know that,
$\cos 2x = {\cos ^2}x - {\sin ^2}x$
Replaces $x$ by $\dfrac{x}{2}$,
\[ \Rightarrow \cos 2\dfrac{x}{2} = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\]
\[ \Rightarrow \cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\] ……… (i)
Similarly, we know that
$\sin 2x = 2\sin x\cos x$
Replace $x$ by $\dfrac{x}{2}$,
$ \Rightarrow \sin 2\dfrac{x}{2} = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$ \Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ ……… (ii)
We also know that,
\[{\sin ^2}x + {\cos ^2}x = 1\]
Replace $x$ by $\dfrac{x}{2}$,
\[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\] ………. (iii)
Now, we have
${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$
Putting the value of sin x, cos x and 1 from equation (i), (ii) and (iii), we will get
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} \right)$
Using the identity ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we can write ${\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ as ${\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)^2}$
Therefore,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
Now, using the identity ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$, we can write ${\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}$ as $\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)$
Thus,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}} \right)$
Now, dividing numerator and denominator both by $\cos \dfrac{x}{2}$, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\cos \dfrac{x}{2}}}}}} \right)\]
Solving this, we will get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)\] …..(iv) $\therefore \tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
As we know that,
$\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) = \dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}$ $\therefore \tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
Put this in equation (iv),
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)\]
\[ \Rightarrow \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Hence, we can say that the simplest form of ${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 - \sin x}}} \right)$ is \[\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)\]
Note: For solving such questions, we need to remember the trigonometric properties as these questions can only be solved when we remember the properties and formula. This question can also get solved by putting $\cos x$ as $\sin \left( {\dfrac{\pi }{2} - x} \right)$ and $\sin x$ as $\cos \left( {\dfrac{\pi }{2} - x} \right)$ in the given trigonometric expression. Through this, we will get the answer.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
