
Express $\dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$ in the form $x+iy$.
Answer
602.7k+ views
Hint: The main key point in this problem is dividing the numerator and denominator by the conjugate of the complex number in the denominator. If $z=a+ib$ is a complex number, then the conjugate of this complex number is defined as \[\overline{z}=a-ib\]. Then by simplifying the obtained expression we can express it in the form $x+iy$.
Complete step by step answer:
Here, it is given,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$
Here, the complex number in the denominator is,
$\Rightarrow z=(1-\cos \theta )+i(2\sin \theta ).........(i)$.
The conjugate of $z$ is represented as,
$\Rightarrow \overline{z}=(1-\cos \theta )-i(2\sin \theta ).........(ii)$.
Now, we have to multiply the numerator and denominator of the expression $\dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$by equation (ii).
Then we get,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}\times \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta -2i\sin \theta \right)}$
Simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( {{\left( 1-\cos \theta \right)}^{2}}-{{\left( 2i\sin \theta \right)}^{2}} \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta -\left( 4\times {{i}^{2}}\times {{\sin }^{2}}\theta \right) \right)}.........(iii) \\
\end{align}\]
In equation (iii) we have ${{i}^{2}}=-1$. Now, we can rewrite equation (iii) as,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta +4{{\sin }^{2}}\theta \right)}.........(iv)\]
Now, we know ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.Thus, we can rewrite the denominator of equation (iv) as,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta -2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+1-2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3{{\sin }^{2}}\theta \right)}..........(v) \\
\end{align}\]
We also know that, ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Substituting this in equation (v) we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3\left( 1-{{\cos }^{2}}\theta \right) \right)}..........(vi)\]
Now, simplifying the above equation we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3-3{{\cos }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)}.........(vii) \\
\end{align}\]
Now, \[\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)\] can be simplified as,
$\begin{align}
& \Rightarrow \left( -\left( 3{{\cos }^{2}}\theta +2\cos \theta -5 \right) \right) \\
& \Rightarrow -\left( 3{{\cos }^{2}}\theta -3\cos \theta +5\cos \theta -5 \right) \\
& \Rightarrow -\left( 3\cos \theta \left( \cos \theta -1 \right)+5\left( \cos \theta -1 \right) \right) \\
& \Rightarrow -\left( 3\cos \theta +5 \right)\left( \cos \theta -1 \right) \\
& \Rightarrow \left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right).........(viii) \\
\end{align}$
Substituting equation (viii) in equation (vii), we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}.........(ix)\]
On simplifying equation (ix) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{{\left( 1-\cos \theta \right)}}{{\left( 1-\cos \theta \right)}\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \\
\end{align}\]
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}............(x)\]
We know that,
$\begin{align}
& \Rightarrow \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}........(xi) \\
& \Rightarrow 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}........(xii) \\
\end{align}$
Substituting equations (xi) and (xii) in equation (x) we get,
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{4\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}{2{{\sin }^{2}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)}\]
On simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{{4\sin \dfrac{\theta }{2}}\cos \dfrac{\theta }{2}}{{2}{{\sin }^{{2}}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cos \dfrac{\theta }{2}}{\sin \dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}...........(xiii) \\
\end{align}\]
Now we have obtained the expression in the form of $x+iy$.
From equation (xiii) we know that,
The real part $x=\dfrac{1}{3\cos \theta +5}$ and the imaginary part is $-\dfrac{2\cot \dfrac{\theta }{2}}{3\cos \theta +5}$.
Hence, the correct answer is \[\dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}\].
Note: The student should know how to take the conjugate of a complex number and should also know the basic trigonometric functions in order to solve this problem. A complex number is equal to its complex conjugate if its imaginary part is zero.
Complete step by step answer:
Here, it is given,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$
Here, the complex number in the denominator is,
$\Rightarrow z=(1-\cos \theta )+i(2\sin \theta ).........(i)$.
The conjugate of $z$ is represented as,
$\Rightarrow \overline{z}=(1-\cos \theta )-i(2\sin \theta ).........(ii)$.
Now, we have to multiply the numerator and denominator of the expression $\dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$by equation (ii).
Then we get,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}\times \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta -2i\sin \theta \right)}$
Simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( {{\left( 1-\cos \theta \right)}^{2}}-{{\left( 2i\sin \theta \right)}^{2}} \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta -\left( 4\times {{i}^{2}}\times {{\sin }^{2}}\theta \right) \right)}.........(iii) \\
\end{align}\]
In equation (iii) we have ${{i}^{2}}=-1$. Now, we can rewrite equation (iii) as,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta +4{{\sin }^{2}}\theta \right)}.........(iv)\]
Now, we know ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.Thus, we can rewrite the denominator of equation (iv) as,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta -2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+1-2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3{{\sin }^{2}}\theta \right)}..........(v) \\
\end{align}\]
We also know that, ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Substituting this in equation (v) we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3\left( 1-{{\cos }^{2}}\theta \right) \right)}..........(vi)\]
Now, simplifying the above equation we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3-3{{\cos }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)}.........(vii) \\
\end{align}\]
Now, \[\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)\] can be simplified as,
$\begin{align}
& \Rightarrow \left( -\left( 3{{\cos }^{2}}\theta +2\cos \theta -5 \right) \right) \\
& \Rightarrow -\left( 3{{\cos }^{2}}\theta -3\cos \theta +5\cos \theta -5 \right) \\
& \Rightarrow -\left( 3\cos \theta \left( \cos \theta -1 \right)+5\left( \cos \theta -1 \right) \right) \\
& \Rightarrow -\left( 3\cos \theta +5 \right)\left( \cos \theta -1 \right) \\
& \Rightarrow \left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right).........(viii) \\
\end{align}$
Substituting equation (viii) in equation (vii), we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}.........(ix)\]
On simplifying equation (ix) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{{\left( 1-\cos \theta \right)}}{{\left( 1-\cos \theta \right)}\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \\
\end{align}\]
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}............(x)\]
We know that,
$\begin{align}
& \Rightarrow \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}........(xi) \\
& \Rightarrow 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}........(xii) \\
\end{align}$
Substituting equations (xi) and (xii) in equation (x) we get,
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{4\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}{2{{\sin }^{2}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)}\]
On simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{{4\sin \dfrac{\theta }{2}}\cos \dfrac{\theta }{2}}{{2}{{\sin }^{{2}}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cos \dfrac{\theta }{2}}{\sin \dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}...........(xiii) \\
\end{align}\]
Now we have obtained the expression in the form of $x+iy$.
From equation (xiii) we know that,
The real part $x=\dfrac{1}{3\cos \theta +5}$ and the imaginary part is $-\dfrac{2\cot \dfrac{\theta }{2}}{3\cos \theta +5}$.
Hence, the correct answer is \[\dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}\].
Note: The student should know how to take the conjugate of a complex number and should also know the basic trigonometric functions in order to solve this problem. A complex number is equal to its complex conjugate if its imaginary part is zero.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

