
Express $\dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$ in the form $x+iy$.
Answer
588.6k+ views
Hint: The main key point in this problem is dividing the numerator and denominator by the conjugate of the complex number in the denominator. If $z=a+ib$ is a complex number, then the conjugate of this complex number is defined as \[\overline{z}=a-ib\]. Then by simplifying the obtained expression we can express it in the form $x+iy$.
Complete step by step answer:
Here, it is given,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$
Here, the complex number in the denominator is,
$\Rightarrow z=(1-\cos \theta )+i(2\sin \theta ).........(i)$.
The conjugate of $z$ is represented as,
$\Rightarrow \overline{z}=(1-\cos \theta )-i(2\sin \theta ).........(ii)$.
Now, we have to multiply the numerator and denominator of the expression $\dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$by equation (ii).
Then we get,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}\times \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta -2i\sin \theta \right)}$
Simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( {{\left( 1-\cos \theta \right)}^{2}}-{{\left( 2i\sin \theta \right)}^{2}} \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta -\left( 4\times {{i}^{2}}\times {{\sin }^{2}}\theta \right) \right)}.........(iii) \\
\end{align}\]
In equation (iii) we have ${{i}^{2}}=-1$. Now, we can rewrite equation (iii) as,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta +4{{\sin }^{2}}\theta \right)}.........(iv)\]
Now, we know ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.Thus, we can rewrite the denominator of equation (iv) as,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta -2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+1-2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3{{\sin }^{2}}\theta \right)}..........(v) \\
\end{align}\]
We also know that, ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Substituting this in equation (v) we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3\left( 1-{{\cos }^{2}}\theta \right) \right)}..........(vi)\]
Now, simplifying the above equation we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3-3{{\cos }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)}.........(vii) \\
\end{align}\]
Now, \[\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)\] can be simplified as,
$\begin{align}
& \Rightarrow \left( -\left( 3{{\cos }^{2}}\theta +2\cos \theta -5 \right) \right) \\
& \Rightarrow -\left( 3{{\cos }^{2}}\theta -3\cos \theta +5\cos \theta -5 \right) \\
& \Rightarrow -\left( 3\cos \theta \left( \cos \theta -1 \right)+5\left( \cos \theta -1 \right) \right) \\
& \Rightarrow -\left( 3\cos \theta +5 \right)\left( \cos \theta -1 \right) \\
& \Rightarrow \left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right).........(viii) \\
\end{align}$
Substituting equation (viii) in equation (vii), we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}.........(ix)\]
On simplifying equation (ix) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{{\left( 1-\cos \theta \right)}}{{\left( 1-\cos \theta \right)}\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \\
\end{align}\]
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}............(x)\]
We know that,
$\begin{align}
& \Rightarrow \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}........(xi) \\
& \Rightarrow 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}........(xii) \\
\end{align}$
Substituting equations (xi) and (xii) in equation (x) we get,
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{4\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}{2{{\sin }^{2}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)}\]
On simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{{4\sin \dfrac{\theta }{2}}\cos \dfrac{\theta }{2}}{{2}{{\sin }^{{2}}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cos \dfrac{\theta }{2}}{\sin \dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}...........(xiii) \\
\end{align}\]
Now we have obtained the expression in the form of $x+iy$.
From equation (xiii) we know that,
The real part $x=\dfrac{1}{3\cos \theta +5}$ and the imaginary part is $-\dfrac{2\cot \dfrac{\theta }{2}}{3\cos \theta +5}$.
Hence, the correct answer is \[\dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}\].
Note: The student should know how to take the conjugate of a complex number and should also know the basic trigonometric functions in order to solve this problem. A complex number is equal to its complex conjugate if its imaginary part is zero.
Complete step by step answer:
Here, it is given,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$
Here, the complex number in the denominator is,
$\Rightarrow z=(1-\cos \theta )+i(2\sin \theta ).........(i)$.
The conjugate of $z$ is represented as,
$\Rightarrow \overline{z}=(1-\cos \theta )-i(2\sin \theta ).........(ii)$.
Now, we have to multiply the numerator and denominator of the expression $\dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}$by equation (ii).
Then we get,
$\Rightarrow \dfrac{1}{\left( 1-\cos \theta +2i\sin \theta \right)}\times \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta -2i\sin \theta \right)}$
Simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( {{\left( 1-\cos \theta \right)}^{2}}-{{\left( 2i\sin \theta \right)}^{2}} \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta -\left( 4\times {{i}^{2}}\times {{\sin }^{2}}\theta \right) \right)}.........(iii) \\
\end{align}\]
In equation (iii) we have ${{i}^{2}}=-1$. Now, we can rewrite equation (iii) as,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta -2\cos \theta +4{{\sin }^{2}}\theta \right)}.........(iv)\]
Now, we know ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.Thus, we can rewrite the denominator of equation (iv) as,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+{{\cos }^{2}}\theta +{{\sin }^{2}}\theta -2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1+1-2\cos \theta +3{{\sin }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3{{\sin }^{2}}\theta \right)}..........(v) \\
\end{align}\]
We also know that, ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Substituting this in equation (v) we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3\left( 1-{{\cos }^{2}}\theta \right) \right)}..........(vi)\]
Now, simplifying the above equation we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 2-2\cos \theta +3-3{{\cos }^{2}}\theta \right)} \\
& \Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)}.........(vii) \\
\end{align}\]
Now, \[\left( 5-2\cos \theta -3{{\cos }^{2}}\theta \right)\] can be simplified as,
$\begin{align}
& \Rightarrow \left( -\left( 3{{\cos }^{2}}\theta +2\cos \theta -5 \right) \right) \\
& \Rightarrow -\left( 3{{\cos }^{2}}\theta -3\cos \theta +5\cos \theta -5 \right) \\
& \Rightarrow -\left( 3\cos \theta \left( \cos \theta -1 \right)+5\left( \cos \theta -1 \right) \right) \\
& \Rightarrow -\left( 3\cos \theta +5 \right)\left( \cos \theta -1 \right) \\
& \Rightarrow \left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right).........(viii) \\
\end{align}$
Substituting equation (viii) in equation (vii), we get,
\[\Rightarrow \dfrac{\left( 1-\cos \theta -2i\sin \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}.........(ix)\]
On simplifying equation (ix) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-\cos \theta \right)}{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{{\left( 1-\cos \theta \right)}}{{\left( 1-\cos \theta \right)}\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)} \\
& \\
\end{align}\]
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\sin \theta }{\left( 1-\cos \theta \right)\left( 3\cos \theta +5 \right)}............(x)\]
We know that,
$\begin{align}
& \Rightarrow \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}........(xi) \\
& \Rightarrow 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}........(xii) \\
\end{align}$
Substituting equations (xi) and (xii) in equation (x) we get,
\[\Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{4\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}{2{{\sin }^{2}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)}\]
On simplifying the above equation, we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{{4\sin \dfrac{\theta }{2}}\cos \dfrac{\theta }{2}}{{2}{{\sin }^{{2}}}\dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cos \dfrac{\theta }{2}}{\sin \dfrac{\theta }{2}\left( 3\cos \theta +5 \right)} \\
& \Rightarrow \dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}...........(xiii) \\
\end{align}\]
Now we have obtained the expression in the form of $x+iy$.
From equation (xiii) we know that,
The real part $x=\dfrac{1}{3\cos \theta +5}$ and the imaginary part is $-\dfrac{2\cot \dfrac{\theta }{2}}{3\cos \theta +5}$.
Hence, the correct answer is \[\dfrac{1}{\left( 3\cos \theta +5 \right)}-i\dfrac{2\cot \dfrac{\theta }{2}}{\left( 3\cos \theta +5 \right)}\].
Note: The student should know how to take the conjugate of a complex number and should also know the basic trigonometric functions in order to solve this problem. A complex number is equal to its complex conjugate if its imaginary part is zero.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

