
How do you express \[{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \] in terms of non-exponential trigonometric function?
Answer
478.8k+ views
Hint: To solve this question first we use the algebraic identity and convert the equation in sin and cos trigonometric function and then take LCM in the denominator and use the identity and formulas and try to convert the whole relations in the power one and that is the final answer.
Complete step-by-step answer:
Given,
\[{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \]
We have to express this term in non-exponential trigonometric functions.
First we are using the algebraic identity \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
We have to use this identity \[\cot \theta \] and \[\tan \theta \]
\[ \Rightarrow {\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \]
Using the identity of \[{a^3} - {b^3}\]
\[ \Rightarrow \left( {\cot \theta - \tan \theta } \right)\left( {{{\cot }^2}\theta + {{\tan }^2}\theta + \cot \theta \tan \theta } \right) - {\cos ^2}\theta \]
We know that multiplication of \[\cot \theta \] and \[\tan \theta \] is 1.
Now we are converting all the functions in sin and cos function.
\[ \Rightarrow \left( {\dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {\dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }} + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta \]
Now taking LCM in denominator
\[ \Rightarrow \left( {\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta \]
Converting first multiplication in double angle by multiplying and dividing by 2
On using the formula of trigonometry \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \] and \[2\sin \theta \cos \theta = \sin 2\theta \]
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta \]
Now taking the LCM in the second multiplication and adding and subtracting the same part one time
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta + 2{{\sin }^2}\theta {{\cos }^2}\theta - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta \]
Now making the perfect square in second multiple.
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)}^2} - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta \]
Now using the identity of trigonometry \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{1 - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta \]
Now using the formulas \[\dfrac{{\cos 2\theta }}{{\sin 2\theta }} = \cot 2\theta \], \[{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}\] and splitting the second multiplication.
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{1}{{{{\sin }^2}\theta {{\cos }^2}\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\]
Multiplying and dividing by 4 in the second multiplication
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{4}{{{{\sin }^2}2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\]
Now using the formula \[{\sin ^2}2\theta = \dfrac{{1 - \cos 4\theta }}{2}\]
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{8}{{1 - \cos 2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\]
Final answer:
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{8}{{1 - \cos 2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\] is the non-exponential expression of \[{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \]
Note: This question is tricky as well as difficult you must solve this type of question. To solve these types of questions we must know all the formulas, identities, and the relation between all the trigonometric relations. There are many places where students often make mistakes to take a look at clearly.
Complete step-by-step answer:
Given,
\[{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \]
We have to express this term in non-exponential trigonometric functions.
First we are using the algebraic identity \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
We have to use this identity \[\cot \theta \] and \[\tan \theta \]
\[ \Rightarrow {\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \]
Using the identity of \[{a^3} - {b^3}\]
\[ \Rightarrow \left( {\cot \theta - \tan \theta } \right)\left( {{{\cot }^2}\theta + {{\tan }^2}\theta + \cot \theta \tan \theta } \right) - {\cos ^2}\theta \]
We know that multiplication of \[\cot \theta \] and \[\tan \theta \] is 1.
Now we are converting all the functions in sin and cos function.
\[ \Rightarrow \left( {\dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {\dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }} + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta \]
Now taking LCM in denominator
\[ \Rightarrow \left( {\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta \]
Converting first multiplication in double angle by multiplying and dividing by 2
On using the formula of trigonometry \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \] and \[2\sin \theta \cos \theta = \sin 2\theta \]
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }} + 1} \right) - {\cos ^2}\theta \]
Now taking the LCM in the second multiplication and adding and subtracting the same part one time
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\cos }^4}\theta + {{\sin }^4}\theta + 2{{\sin }^2}\theta {{\cos }^2}\theta - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta \]
Now making the perfect square in second multiple.
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)}^2} - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta \]
Now using the identity of trigonometry \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[ \Rightarrow \left( {\dfrac{{2\cos 2\theta }}{{\sin 2\theta }}} \right)\left( {\dfrac{{1 - {{\sin }^2}\theta {{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}} \right) - {\cos ^2}\theta \]
Now using the formulas \[\dfrac{{\cos 2\theta }}{{\sin 2\theta }} = \cot 2\theta \], \[{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}\] and splitting the second multiplication.
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{1}{{{{\sin }^2}\theta {{\cos }^2}\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\]
Multiplying and dividing by 4 in the second multiplication
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{4}{{{{\sin }^2}2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\]
Now using the formula \[{\sin ^2}2\theta = \dfrac{{1 - \cos 4\theta }}{2}\]
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{8}{{1 - \cos 2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\]
Final answer:
\[ \Rightarrow \left( {2\cot 2\theta } \right)\left( {\dfrac{8}{{1 - \cos 2\theta }} - 1} \right) - \dfrac{{1 + \cos 2\theta }}{2}\] is the non-exponential expression of \[{\cot ^3}\theta - {\cos ^2}\theta - {\tan ^3}\theta \]
Note: This question is tricky as well as difficult you must solve this type of question. To solve these types of questions we must know all the formulas, identities, and the relation between all the trigonometric relations. There are many places where students often make mistakes to take a look at clearly.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

