
How do you express $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ in terms of $\sin \theta $?
Answer
536.1k+ views
Hint: We first try to establish the trigonometric identity \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. We find the value of \[{{\cos }^{2}}\theta \] in the form of \[\sin \theta \] where \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \]. We also have \[\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }\]. We only simplify the $\cos \theta +\sec \theta $ part and put the values to find $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ in terms of $\sin \theta $.
Complete step-by-step answer:
We have the identity theorem of trigonometric values where \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
From the relation we get \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \].
We take square root value on both sides to get
\[\begin{align}
& \sqrt{{{\cos }^{2}}\theta }=\sqrt{1-{{\sin }^{2}}\theta } \\
& \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } \\
\end{align}\]
We first try to simplify the equation $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $.
We keep the term $-{{\cos }^{2}}\theta $ in $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ as it is.
We simplify the rest of the expression $\cos \theta +\sec \theta $.
We know the relation where $\sec \theta =\dfrac{1}{\cos \theta }$.
We put the value and get $\cos \theta +\sec \theta =\cos \theta +\dfrac{1}{\cos \theta }$.
We simplify the equation to get $\cos \theta +\dfrac{1}{\cos \theta }=\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }$.
Now the final expression becomes
$\cos \theta -{{\cos }^{2}}\theta +\sec \theta =\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }-{{\cos }^{2}}\theta $.
Now we place the values of \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \] and \[\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }\] to get
$\begin{align}
& \cos \theta -{{\cos }^{2}}\theta +\sec \theta \\
& =\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }-{{\cos }^{2}}\theta \\
& =\dfrac{1-{{\sin }^{2}}\theta +1}{\sqrt{1-{{\sin }^{2}}\theta }}-\left( 1-{{\sin }^{2}}\theta \right) \\
\end{align}$
Now we simplify the equation to get
$\begin{align}
& \cos \theta -{{\cos }^{2}}\theta +\sec \theta \\
& =\dfrac{1-{{\sin }^{2}}\theta +1}{\sqrt{1-{{\sin }^{2}}\theta }}-\left( 1-{{\sin }^{2}}\theta \right) \\
& ={{\sin }^{2}}\theta +\dfrac{2-{{\sin }^{2}}\theta }{\sqrt{1-{{\sin }^{2}}\theta }}-1 \\
\end{align}$
The expression of $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ in terms of $\sin \theta $ is ${{\sin }^{2}}\theta +\dfrac{2-{{\sin }^{2}}\theta }{\sqrt{1-{{\sin }^{2}}\theta }}-1$.
Note: The square root portion can’t be simplified further. We keep it as it is. For the simplified form we didn’t take the negative version. The modulus of the function omits the possibility.
Complete step-by-step answer:
We have the identity theorem of trigonometric values where \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
From the relation we get \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \].
We take square root value on both sides to get
\[\begin{align}
& \sqrt{{{\cos }^{2}}\theta }=\sqrt{1-{{\sin }^{2}}\theta } \\
& \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } \\
\end{align}\]
We first try to simplify the equation $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $.
We keep the term $-{{\cos }^{2}}\theta $ in $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ as it is.
We simplify the rest of the expression $\cos \theta +\sec \theta $.
We know the relation where $\sec \theta =\dfrac{1}{\cos \theta }$.
We put the value and get $\cos \theta +\sec \theta =\cos \theta +\dfrac{1}{\cos \theta }$.
We simplify the equation to get $\cos \theta +\dfrac{1}{\cos \theta }=\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }$.
Now the final expression becomes
$\cos \theta -{{\cos }^{2}}\theta +\sec \theta =\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }-{{\cos }^{2}}\theta $.
Now we place the values of \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \] and \[\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }\] to get
$\begin{align}
& \cos \theta -{{\cos }^{2}}\theta +\sec \theta \\
& =\dfrac{{{\cos }^{2}}\theta +1}{\cos \theta }-{{\cos }^{2}}\theta \\
& =\dfrac{1-{{\sin }^{2}}\theta +1}{\sqrt{1-{{\sin }^{2}}\theta }}-\left( 1-{{\sin }^{2}}\theta \right) \\
\end{align}$
Now we simplify the equation to get
$\begin{align}
& \cos \theta -{{\cos }^{2}}\theta +\sec \theta \\
& =\dfrac{1-{{\sin }^{2}}\theta +1}{\sqrt{1-{{\sin }^{2}}\theta }}-\left( 1-{{\sin }^{2}}\theta \right) \\
& ={{\sin }^{2}}\theta +\dfrac{2-{{\sin }^{2}}\theta }{\sqrt{1-{{\sin }^{2}}\theta }}-1 \\
\end{align}$
The expression of $\cos \theta -{{\cos }^{2}}\theta +\sec \theta $ in terms of $\sin \theta $ is ${{\sin }^{2}}\theta +\dfrac{2-{{\sin }^{2}}\theta }{\sqrt{1-{{\sin }^{2}}\theta }}-1$.
Note: The square root portion can’t be simplified further. We keep it as it is. For the simplified form we didn’t take the negative version. The modulus of the function omits the possibility.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

