
How do you express $\cos 4\theta $ in terms of $\cos 2\theta ?$
Answer
543.3k+ views
Hint:Split $4\theta $ into two $2\theta $ and then apply the cosine compound angle formula and further simplify, use some trigonometric identities in order to simplify it.
The compound formula for cosine function which will be used is
$\cos (a + b) = \cos a\cos b - \sin a\sin b$ , where $a\;{\text{and}}\;b$ are respective arguments of the cosine function.
Complete step by step solution:
In order to express $\cos 4\theta $ in terms of $\cos 2\theta $, we can clearly see that we need $2\theta $ as the argument, so splitting $4\theta $ into $2\theta $
$ \Rightarrow 4\theta = 2\theta + 2\theta $
Now taking the cosine function both sides, we will get
$ \Rightarrow \cos 4\theta = \cos (2\theta + 2\theta )$
Do we have seen this type of expression that is $\cos (2\theta + 2\theta )$ somewhere else?
Yes this is a trigonometric identity and belongs to the compound angle formula for cosine function which is given as
$\cos (a + b) = \cos a\cos b - \sin a\sin b$
With the help of this formula simplifying the equation further,
$
\Rightarrow \cos 4\theta = \cos (2\theta + 2\theta ) \\
\Rightarrow \cos 4\theta = \cos 2\theta \cos 2\theta - \sin 2\theta \sin 2\theta \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
$
Now from the identity ${\sin ^2}x + {\cos ^2}x = 1$ we know that
${\sin ^2}x = 1 - {\cos ^2}x$
Substituting this in above equation we will get,
$
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - (1 - {\cos ^2}2\theta ) \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - 1 + {\cos ^2}2\theta \\
\Rightarrow \cos 4\theta = 2{\cos ^2}2\theta - 1 \\
$
So, $\cos 4\theta $ is expressed in terms of $\cos 2\theta $ as $2{\cos ^2}2\theta - 1$
Note: There is one more way to express $\cos 4\theta $ in terms of $\cos 2\theta $, let us see that from the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we can write that
$
\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x \\
\Rightarrow \cos x = \sqrt {1 - {{\sin }^2}x} \\
$
With help of this we can write,
$ \Rightarrow \cos 4\theta = \sqrt {1 - {{\sin }^2}4\theta } $
Using here the algebraic identity ${a^2} - {b^2} = (a + b)(a - b)$ to simplify further
$
\Rightarrow \cos 4\theta = \sqrt {{1^2} - {{\sin }^2}4\theta } \\
\Rightarrow \cos 4\theta = \sqrt {(1 + \sin 4\theta )(1 - \sin 4\theta )} \\
$
Now applying the compound angle formula of sine angle which is given as
$\sin 2x = 2\sin x\cos x$
With help of this simplifying the equation further, we will get
$
\Rightarrow \cos 4\theta = \sqrt {(1 + \sin 2(2\theta ))(1 - \sin 2(2\theta ))} \\
\Rightarrow \cos 4\theta = \sqrt {(1 + 2\sin 2\theta \cos 2\theta )(1 - 2\sin 2\theta \cos 2\theta )}
\\
$
Now from ${\sin ^2}x + {\cos ^2}x = 1$, we will get
$
\Rightarrow \cos 4\theta = \sqrt {(1 + 2\sin 2\theta \cos 2\theta )(1 - 2\sin 2\theta \cos 2\theta )}
\\
\Rightarrow \cos 4\theta = \sqrt {({{\sin }^2}2\theta + {{\cos }^2}2\theta + 2\sin 2\theta \cos
2\theta )({{\sin }^2}2\theta + {{\cos }^2}2\theta - 2\sin 2\theta \cos 2\theta )} \\
$
From the algebraic identity ${(a + b)^2} = ({a^2} + {b^2} + 2ab)\;{\text{and}}\;{(a - b)^2} = ({a^2} +
{b^2} - 2ab)$ we can write
\[
\Rightarrow \cos 4\theta = \sqrt {({{\cos }^2}2\theta + {{\sin }^2}2\theta + 2\sin 2\theta \cos
2\theta )({{\cos }^2}2\theta + {{\sin }^2}2\theta - 2\sin 2\theta \cos 2\theta )} \\
\Rightarrow \cos 4\theta = \sqrt {{{(\cos 2\theta + \sin 2\theta )}^2}{{(\cos 2\theta - \sin 2\theta
)}^2}} \\
\]
We can further write it as
\[
\Rightarrow \cos 4\theta = \sqrt {{{(\cos 2\theta + \sin 2\theta )}^2}{{(\cos 2\theta - \sin 2\theta
)}^2}} \\
\Rightarrow \cos 4\theta = (\cos 2\theta + \sin 2\theta )(\cos 2\theta - \sin 2\theta ) \\
\]
Again from ${a^2} - {b^2} = (a + b)(a - b)$ we can write
\[
\Rightarrow \cos 4\theta = (\cos 2\theta + \sin 2\theta )(\cos 2\theta - \sin 2\theta ) \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
\]
Now from ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
\[
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - (1 - {\cos ^2}2\theta ) \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - 1 + {\cos ^2}2\theta \\
\Rightarrow \cos 4\theta = 2{\cos ^2}2\theta - 1 \\
\]
So we again expressed $\cos 4\theta $ in terms of $\cos 2\theta $, but this method is a bit lengthy and complex, go for the upper one.
The compound formula for cosine function which will be used is
$\cos (a + b) = \cos a\cos b - \sin a\sin b$ , where $a\;{\text{and}}\;b$ are respective arguments of the cosine function.
Complete step by step solution:
In order to express $\cos 4\theta $ in terms of $\cos 2\theta $, we can clearly see that we need $2\theta $ as the argument, so splitting $4\theta $ into $2\theta $
$ \Rightarrow 4\theta = 2\theta + 2\theta $
Now taking the cosine function both sides, we will get
$ \Rightarrow \cos 4\theta = \cos (2\theta + 2\theta )$
Do we have seen this type of expression that is $\cos (2\theta + 2\theta )$ somewhere else?
Yes this is a trigonometric identity and belongs to the compound angle formula for cosine function which is given as
$\cos (a + b) = \cos a\cos b - \sin a\sin b$
With the help of this formula simplifying the equation further,
$
\Rightarrow \cos 4\theta = \cos (2\theta + 2\theta ) \\
\Rightarrow \cos 4\theta = \cos 2\theta \cos 2\theta - \sin 2\theta \sin 2\theta \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
$
Now from the identity ${\sin ^2}x + {\cos ^2}x = 1$ we know that
${\sin ^2}x = 1 - {\cos ^2}x$
Substituting this in above equation we will get,
$
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - (1 - {\cos ^2}2\theta ) \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - 1 + {\cos ^2}2\theta \\
\Rightarrow \cos 4\theta = 2{\cos ^2}2\theta - 1 \\
$
So, $\cos 4\theta $ is expressed in terms of $\cos 2\theta $ as $2{\cos ^2}2\theta - 1$
Note: There is one more way to express $\cos 4\theta $ in terms of $\cos 2\theta $, let us see that from the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we can write that
$
\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x \\
\Rightarrow \cos x = \sqrt {1 - {{\sin }^2}x} \\
$
With help of this we can write,
$ \Rightarrow \cos 4\theta = \sqrt {1 - {{\sin }^2}4\theta } $
Using here the algebraic identity ${a^2} - {b^2} = (a + b)(a - b)$ to simplify further
$
\Rightarrow \cos 4\theta = \sqrt {{1^2} - {{\sin }^2}4\theta } \\
\Rightarrow \cos 4\theta = \sqrt {(1 + \sin 4\theta )(1 - \sin 4\theta )} \\
$
Now applying the compound angle formula of sine angle which is given as
$\sin 2x = 2\sin x\cos x$
With help of this simplifying the equation further, we will get
$
\Rightarrow \cos 4\theta = \sqrt {(1 + \sin 2(2\theta ))(1 - \sin 2(2\theta ))} \\
\Rightarrow \cos 4\theta = \sqrt {(1 + 2\sin 2\theta \cos 2\theta )(1 - 2\sin 2\theta \cos 2\theta )}
\\
$
Now from ${\sin ^2}x + {\cos ^2}x = 1$, we will get
$
\Rightarrow \cos 4\theta = \sqrt {(1 + 2\sin 2\theta \cos 2\theta )(1 - 2\sin 2\theta \cos 2\theta )}
\\
\Rightarrow \cos 4\theta = \sqrt {({{\sin }^2}2\theta + {{\cos }^2}2\theta + 2\sin 2\theta \cos
2\theta )({{\sin }^2}2\theta + {{\cos }^2}2\theta - 2\sin 2\theta \cos 2\theta )} \\
$
From the algebraic identity ${(a + b)^2} = ({a^2} + {b^2} + 2ab)\;{\text{and}}\;{(a - b)^2} = ({a^2} +
{b^2} - 2ab)$ we can write
\[
\Rightarrow \cos 4\theta = \sqrt {({{\cos }^2}2\theta + {{\sin }^2}2\theta + 2\sin 2\theta \cos
2\theta )({{\cos }^2}2\theta + {{\sin }^2}2\theta - 2\sin 2\theta \cos 2\theta )} \\
\Rightarrow \cos 4\theta = \sqrt {{{(\cos 2\theta + \sin 2\theta )}^2}{{(\cos 2\theta - \sin 2\theta
)}^2}} \\
\]
We can further write it as
\[
\Rightarrow \cos 4\theta = \sqrt {{{(\cos 2\theta + \sin 2\theta )}^2}{{(\cos 2\theta - \sin 2\theta
)}^2}} \\
\Rightarrow \cos 4\theta = (\cos 2\theta + \sin 2\theta )(\cos 2\theta - \sin 2\theta ) \\
\]
Again from ${a^2} - {b^2} = (a + b)(a - b)$ we can write
\[
\Rightarrow \cos 4\theta = (\cos 2\theta + \sin 2\theta )(\cos 2\theta - \sin 2\theta ) \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
\]
Now from ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
\[
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - {\sin ^2}2\theta \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - (1 - {\cos ^2}2\theta ) \\
\Rightarrow \cos 4\theta = {\cos ^2}2\theta - 1 + {\cos ^2}2\theta \\
\Rightarrow \cos 4\theta = 2{\cos ^2}2\theta - 1 \\
\]
So we again expressed $\cos 4\theta $ in terms of $\cos 2\theta $, but this method is a bit lengthy and complex, go for the upper one.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

