Answer
Verified
447.3k+ views
Hint: Fully filled and Half filled electronic configurations are more stable. Oxidation states with stable configurations are more easy to obtain than oxidation states with relatively less stable electron configurations.
Complete answer:
Manganese has atomic number 25, and electronic configuration of manganese is $1{{s}^{2}},2{{s}^{2}},2{{p}^{6}},3{{s}^{2}},3{{p}^{6}},4{{s}^{2}},3{{d}^{5}}$.
On removal of two electrons,it becomes $M{{n}^{+2}}$, whose configuration is $[Ar]4{{s}^{0}},3{{d}^{5}}$.
As we can see that on removal of two electrons, manganese have a configuration where d-block is half filled. We know that half filled and fully filled orbitals are more stable than any other configuration. Therefore, $M{{n}^{+2}}$ is stable at this oxidation state.
Iron has atomic number 26, and electronic configuration of Iron is $1{{s}^{2}},2{{s}^{2}},2{{p}^{6}},3{{s}^{2}},3{{p}^{6}},4{{s}^{2}},3{{d}^{6}}$.
On removal of two electrons, it becomes $F{{e}^{+2}}$, whose configuration is $[Ar]4{{s}^{0}},3{{d}^{6}}$.
Now Iron has six electrons in d-orbital, making the d-orbital unsymmetrically filled. So to obtain symmetry and more stability it will lose one more electron to go on to +3 oxidation state.
After losing one more electron from $F{{e}^{+2}}$, it becomes, $F{{e}^{+3}}$, whose configuration is $[Ar]4{{s}^{0}},3{{d}^{5}}$.
Now we see, in $F{{e}^{+3}}$, d-orbital is half filled with ${{d}^{5}}$configuration. It is more stable than ${{d}^{6}}$ configuration in $F{{e}^{+2}}$.
Now, when we compare, manganese and iron, we see that manganese has half filled d-orbital in +2 oxidation state which is more stable than any other oxidation state of manganese, and iron have half filled d-orbital in +3 oxidation state, therefore, iron tends to move toward +3 oxidation state and Manganese is stable at +2 oxidation state.
Note: The reason for the stability of half filled and fully filled orbitals or configurations is because of symmetry and exchange energy. The half filled and fully-filled orbitals are more symmetrical than any other configurations and symmetry leads to more stability. Also electrons present in different subshells exchange their positions, when electrons are filled symmetrically, exchange energy is less, hence greater stability.
Complete answer:
Manganese has atomic number 25, and electronic configuration of manganese is $1{{s}^{2}},2{{s}^{2}},2{{p}^{6}},3{{s}^{2}},3{{p}^{6}},4{{s}^{2}},3{{d}^{5}}$.
On removal of two electrons,it becomes $M{{n}^{+2}}$, whose configuration is $[Ar]4{{s}^{0}},3{{d}^{5}}$.
As we can see that on removal of two electrons, manganese have a configuration where d-block is half filled. We know that half filled and fully filled orbitals are more stable than any other configuration. Therefore, $M{{n}^{+2}}$ is stable at this oxidation state.
Iron has atomic number 26, and electronic configuration of Iron is $1{{s}^{2}},2{{s}^{2}},2{{p}^{6}},3{{s}^{2}},3{{p}^{6}},4{{s}^{2}},3{{d}^{6}}$.
On removal of two electrons, it becomes $F{{e}^{+2}}$, whose configuration is $[Ar]4{{s}^{0}},3{{d}^{6}}$.
Now Iron has six electrons in d-orbital, making the d-orbital unsymmetrically filled. So to obtain symmetry and more stability it will lose one more electron to go on to +3 oxidation state.
After losing one more electron from $F{{e}^{+2}}$, it becomes, $F{{e}^{+3}}$, whose configuration is $[Ar]4{{s}^{0}},3{{d}^{5}}$.
Now we see, in $F{{e}^{+3}}$, d-orbital is half filled with ${{d}^{5}}$configuration. It is more stable than ${{d}^{6}}$ configuration in $F{{e}^{+2}}$.
Now, when we compare, manganese and iron, we see that manganese has half filled d-orbital in +2 oxidation state which is more stable than any other oxidation state of manganese, and iron have half filled d-orbital in +3 oxidation state, therefore, iron tends to move toward +3 oxidation state and Manganese is stable at +2 oxidation state.
Note: The reason for the stability of half filled and fully filled orbitals or configurations is because of symmetry and exchange energy. The half filled and fully-filled orbitals are more symmetrical than any other configurations and symmetry leads to more stability. Also electrons present in different subshells exchange their positions, when electrons are filled symmetrically, exchange energy is less, hence greater stability.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of friction in our daily life
When people say No pun intended what does that mea class 8 english CBSE