
Explain how to find the asymptotes: vertical and horizontal to the given curve:
$ y = \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} $
Answer
515.1k+ views
Hint: Predicting the behavior of a curve is done using asymptotes. The basic idea is that the steep curve of a graph is denoted by asymptotes. That curve looks similar to a straight line. When either of the axes that is $ x $ or $ y $ will tend to $ \infty $ , the curve will approach a line but will not meet it. The line that will be formed when the curve and line move together to zero is the asymptote. Also remember that this implies that the asymptote and the curve are parallel to each other.
Complete step-by-step answer:
We must first write down the equation then check when the
Let us first note down what the original equation for the curve;
$ y = \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} $
Let us see when the denominator can become $ 0 $ ;
$
\Rightarrow {e^x} - 2 = 0 \\
\Rightarrow {e^x} = 2 \\
\Rightarrow x = \ln 2 \;
$
Moving on to the calculation of vertical asymptotes by applying the limit where $ x \to \ln 2,x < \ln 2 $ and $ x \to \ln 2,x > \ln 2 $ ;
$
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2.\ln 2}} + 1}}{{{e^{\ln 2}} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{4 + 1}}{{{2^ - } - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \dfrac{5}{{{0^ - }}} = - \infty \;
$
And
$
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2.\ln 2}} + 1}}{{{e^{\ln 2}} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{4 + 1}}{{{2^ + } - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \dfrac{5}{{{0^ + }}} = + \infty \;
$
So we can say that the vertical asymptote will be : $ y = \ln 2 $
Next we move on to the calculation of horizontal asymptotes, by applying the limit $ x \to + \infty $ and $ x \to - \infty $ we get;
$
\Rightarrow \mathop {\lim }\limits_{_{x \to + \infty }} y = \mathop {\lim }\limits_{_{x \to + \infty }} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to + \infty }} y = \mathop {\lim }\limits_{_{x \to + \infty }} \dfrac{{{e^{2x}}}}{{{e^x}}} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{_{x \to + \infty }} {e^x} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to + \infty } y = + \infty \;
$
And
$
\Rightarrow \mathop {\lim }\limits_{_{x \to - \infty }} y = \mathop {\lim }\limits_{_{x \to - \infty }} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to - \infty }} y = \mathop {\lim }\limits_{_{x \to - \infty }} \dfrac{{{0^ + } + 1}}{{{0^ + } - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to - \infty } y = - \dfrac{1}{2} \;
$
So the horizontal asymptote will be : $ y = - \dfrac{1}{2} $
So, the correct answer is “ $ y = - \dfrac{1}{2} $ ”.
Note: There are many applications where asymptotes can be utilized, some of them are listed as follows:
- In Algebra for rational function and for calculus and its limits of functions, they are commonly used,
- When complex equations are considered, asymptotes can be used to make approximations for those equations.
- Asymptotes are also used for designing airplanes.
- In the games flappy bird, surprisingly but with very much significance, asymptotes are used.
Complete step-by-step answer:
We must first write down the equation then check when the
Let us first note down what the original equation for the curve;
$ y = \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} $
Let us see when the denominator can become $ 0 $ ;
$
\Rightarrow {e^x} - 2 = 0 \\
\Rightarrow {e^x} = 2 \\
\Rightarrow x = \ln 2 \;
$
Moving on to the calculation of vertical asymptotes by applying the limit where $ x \to \ln 2,x < \ln 2 $ and $ x \to \ln 2,x > \ln 2 $ ;
$
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2.\ln 2}} + 1}}{{{e^{\ln 2}} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{4 + 1}}{{{2^ - } - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} y = \dfrac{5}{{{0^ - }}} = - \infty \;
$
And
$
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{{e^{2.\ln 2}} + 1}}{{{e^{\ln 2}} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \mathop {\lim }\limits_{_{x \to \ln 2,x < \ln 2}} \dfrac{{4 + 1}}{{{2^ + } - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to \ln 2,x > \ln 2}} y = \dfrac{5}{{{0^ + }}} = + \infty \;
$
So we can say that the vertical asymptote will be : $ y = \ln 2 $
Next we move on to the calculation of horizontal asymptotes, by applying the limit $ x \to + \infty $ and $ x \to - \infty $ we get;
$
\Rightarrow \mathop {\lim }\limits_{_{x \to + \infty }} y = \mathop {\lim }\limits_{_{x \to + \infty }} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to + \infty }} y = \mathop {\lim }\limits_{_{x \to + \infty }} \dfrac{{{e^{2x}}}}{{{e^x}}} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{_{x \to + \infty }} {e^x} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to + \infty } y = + \infty \;
$
And
$
\Rightarrow \mathop {\lim }\limits_{_{x \to - \infty }} y = \mathop {\lim }\limits_{_{x \to - \infty }} \dfrac{{{e^{2x}} + 1}}{{{e^x} - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{_{x \to - \infty }} y = \mathop {\lim }\limits_{_{x \to - \infty }} \dfrac{{{0^ + } + 1}}{{{0^ + } - 2}} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to - \infty } y = - \dfrac{1}{2} \;
$
So the horizontal asymptote will be : $ y = - \dfrac{1}{2} $
So, the correct answer is “ $ y = - \dfrac{1}{2} $ ”.
Note: There are many applications where asymptotes can be utilized, some of them are listed as follows:
- In Algebra for rational function and for calculus and its limits of functions, they are commonly used,
- When complex equations are considered, asymptotes can be used to make approximations for those equations.
- Asymptotes are also used for designing airplanes.
- In the games flappy bird, surprisingly but with very much significance, asymptotes are used.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

