Answer
Verified
396.6k+ views
Hint: The Pauli’s exclusion principle relates to the filling up of electrons in the shell, and the Hund’s rule relates to pairing up of electrons in degenerate orbitals.
Complete answer:
Pauli’s Exclusion Principle: This principle was given by Wolfgang Pauli (1926). This principle actually excludes the possibility of any two electrons having all the same four quantum numbers i.e., 'No two electrons in an atom can have the same set of four quantum numbers'. Because the n, I and m, quantum numbers address a particular orbital. The four quantum numbers required to define the spin of the electron orbital. It can have only two possible values i.e.,$+\dfrac{1}{2}$ and $-\dfrac{1}{2}$. Therefore a maximum of only two electrons can be accommodated in an atomic orbital and these two electrons must have opposite spin.
For example, helium has two electrons $1{{s}^{2}}$ that have the same n, l, m values but different values of spin.
Hund’s Rule: The rule deals with the filling of electrons in the equal energy (degenerate) orbitals of the same subshell. This rule says that ``no pairing of electrons starts in any of the degenerate orbitals until all the orbitals of the subshell contain one electron each with parallel spin". Example : Each of the three p-orbitals of the p-subshell gets one electron of parallel spin before any one of them receives second electrons of opposite spin.
Note: The Pauli’s Exclusion principle, in a nutshell can be said as: “ The maximum number of electrons that can be accommodated in a particular shell is $2{{n}^{2}}$.
Complete answer:
Pauli’s Exclusion Principle: This principle was given by Wolfgang Pauli (1926). This principle actually excludes the possibility of any two electrons having all the same four quantum numbers i.e., 'No two electrons in an atom can have the same set of four quantum numbers'. Because the n, I and m, quantum numbers address a particular orbital. The four quantum numbers required to define the spin of the electron orbital. It can have only two possible values i.e.,$+\dfrac{1}{2}$ and $-\dfrac{1}{2}$. Therefore a maximum of only two electrons can be accommodated in an atomic orbital and these two electrons must have opposite spin.
For example, helium has two electrons $1{{s}^{2}}$ that have the same n, l, m values but different values of spin.
Hund’s Rule: The rule deals with the filling of electrons in the equal energy (degenerate) orbitals of the same subshell. This rule says that ``no pairing of electrons starts in any of the degenerate orbitals until all the orbitals of the subshell contain one electron each with parallel spin". Example : Each of the three p-orbitals of the p-subshell gets one electron of parallel spin before any one of them receives second electrons of opposite spin.
Note: The Pauli’s Exclusion principle, in a nutshell can be said as: “ The maximum number of electrons that can be accommodated in a particular shell is $2{{n}^{2}}$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE