
Expand using binomial theorem ${\left( {2x + 3y} \right)^3}$
Answer
501.6k+ views
Hint: The given question requires us to find the cube of an algebraic binomial expression. We can find the binomial expansion of the given binomial expression by using the Binomial theorem. Binomial theorem helps us to expand the powers of binomial expressions easily and can be used to solve the given problem. We must know the formulae of combinations and factorials for solving the given question using the binomial theorem.
Complete step-by-step answer:
So, we are required to expand the expression of ${\left( {2x + 3y} \right)^3}$.
So, using the binomial theorem, the binomial expansion of \[{\left( {x + y} \right)^n}\] is $\sum\nolimits_{r = 0}^n {\left( {^n{C_r}} \right){{\left( x \right)}^{n - r}}{{\left( y \right)}^r}} $ .
So, the binomial expansion of ${\left( {2x + 3y} \right)^3}$ is \[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} \] .
Now, we have to expand the expression \[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} \] and we are done with the binomial expansion of ${\left( {2x + 3y} \right)^3}$ .
\[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = \left( {^3{C_0}} \right){\left( {2x} \right)^3}{\left( {3y} \right)^0} + \left( {^3{C_1}} \right){\left( {2x} \right)^2}{\left( {3y} \right)^1} + \left( {^3{C_2}} \right){\left( {2x} \right)^1}{\left( {3y} \right)^2} + \left( {^3{C_3}} \right){\left( {2x} \right)^0}{\left( {3y} \right)^3}\]
Substituting values of combination formula,
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = \left( 1 \right){\left( {2x} \right)^3}{\left( {3y} \right)^0} + 3{\left( {2x} \right)^2}{\left( {3y} \right)^1} + 3{\left( {2x} \right)^1}{\left( {3y} \right)^2} + \left( 1 \right){\left( {2x} \right)^0}{\left( {3y} \right)^3}\]
We know that any number raised to power zero is equal to one. So, we get,
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = {\left( {2x} \right)^3} + 3{\left( {2x} \right)^2}{\left( {3y} \right)^1} + 3{\left( {2x} \right)^1}{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\]
Computing the powers of brackets in the expression above, we get,
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = 8{x^3} + 3\left( {4{x^2}} \right)\left( {3y} \right) + 3\left( {2x} \right)\left( {9{y^2}} \right) + \left( {27{y^3}} \right)\]
Opening brackets and doing calculations, we get
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = 8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}\]
Hence, the value of \[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} \] is \[\left( {8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}} \right)\] .
So, Binomial expansion of ${\left( {2x + 3y} \right)^3}$ is \[\left( {8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}} \right)\] .
So, the correct answer is “\[\left( {8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}} \right)\]”.
Note: The given problem can be solved by various methods. The easiest way is to apply the concepts of Binomial theorem as it is very effective in finding the binomial expansion. But the problem can also be solved by actually calculating the cube of the binomial expansion given, though it is tedious to calculate the cube of a binomial polynomial.
Complete step-by-step answer:
So, we are required to expand the expression of ${\left( {2x + 3y} \right)^3}$.
So, using the binomial theorem, the binomial expansion of \[{\left( {x + y} \right)^n}\] is $\sum\nolimits_{r = 0}^n {\left( {^n{C_r}} \right){{\left( x \right)}^{n - r}}{{\left( y \right)}^r}} $ .
So, the binomial expansion of ${\left( {2x + 3y} \right)^3}$ is \[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} \] .
Now, we have to expand the expression \[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} \] and we are done with the binomial expansion of ${\left( {2x + 3y} \right)^3}$ .
\[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = \left( {^3{C_0}} \right){\left( {2x} \right)^3}{\left( {3y} \right)^0} + \left( {^3{C_1}} \right){\left( {2x} \right)^2}{\left( {3y} \right)^1} + \left( {^3{C_2}} \right){\left( {2x} \right)^1}{\left( {3y} \right)^2} + \left( {^3{C_3}} \right){\left( {2x} \right)^0}{\left( {3y} \right)^3}\]
Substituting values of combination formula,
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = \left( 1 \right){\left( {2x} \right)^3}{\left( {3y} \right)^0} + 3{\left( {2x} \right)^2}{\left( {3y} \right)^1} + 3{\left( {2x} \right)^1}{\left( {3y} \right)^2} + \left( 1 \right){\left( {2x} \right)^0}{\left( {3y} \right)^3}\]
We know that any number raised to power zero is equal to one. So, we get,
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = {\left( {2x} \right)^3} + 3{\left( {2x} \right)^2}{\left( {3y} \right)^1} + 3{\left( {2x} \right)^1}{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\]
Computing the powers of brackets in the expression above, we get,
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = 8{x^3} + 3\left( {4{x^2}} \right)\left( {3y} \right) + 3\left( {2x} \right)\left( {9{y^2}} \right) + \left( {27{y^3}} \right)\]
Opening brackets and doing calculations, we get
\[ \Rightarrow \sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} = 8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}\]
Hence, the value of \[\sum\nolimits_{r = 0}^3 {\left( {^3{C_r}} \right){{\left( {2x} \right)}^{3 - r}}{{\left( {3y} \right)}^r}} \] is \[\left( {8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}} \right)\] .
So, Binomial expansion of ${\left( {2x + 3y} \right)^3}$ is \[\left( {8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}} \right)\] .
So, the correct answer is “\[\left( {8{x^3} + 36{x^2}y + 54x{y^2} + 27{y^3}} \right)\]”.
Note: The given problem can be solved by various methods. The easiest way is to apply the concepts of Binomial theorem as it is very effective in finding the binomial expansion. But the problem can also be solved by actually calculating the cube of the binomial expansion given, though it is tedious to calculate the cube of a binomial polynomial.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

