
Expand the given expression ${{(3a\text{ }+\text{ }4b)}^{3}}$
Answer
580.5k+ views
Hint: Here we will use the formula of expansion of cubes, then we replace the terms of formula of expansion of cubes with the terms given in the question and then we proceed with the solution by using the BODMAS rule so as to avoid mistakes.
Complete step-by-step answer:
We know the formula of expansion of cubes which is
${{(x\text{ }+\text{ }y)}^{3}}\text{ }=\text{ }{{x}^{3}}\text{ }+{{y}^{3}}\text{ }+\text{ }3xy(x\text{ }+\text{ }y)$ ………………$\left( 1 \right)$
So here we will replace x with 3a and y with 4b.
Therefore,
$x\text{ }=\text{ }3a$
$y\text{ }=\text{ }4b$
Now the expansion becomes;
${{(3a\text{ }+\text{ }4b)}^{3}}\text{ }=\text{ }{{(3a)}^{3}}\text{ }+{{(4b)}^{3}}\text{ }+\text{ }3\times 3a\times 4b(3a+\text{ }4b)$
$=\text{ }27{{a}^{3}}\text{ }+64{{b}^{3}}\text{ }+\text{ }3\times 3a\times 4b\times 3a+3\times 3a\times 4b\times 4b$
$=\text{ }27{{a}^{3}}\text{ }+64{{b}^{3}}\text{ }+\text{ }108{{a}^{2}}b+144a{{b}^{2}}$
So, the expansion of ${{(3a\text{ }+\text{ }4b)}^{3}}$is $27{{a}^{3}}\text{ }+64{{b}^{3}}\text{ }+\text{ }108{{a}^{2}}b+144a{{b}^{2}}$.
Additional information: There are some other commonly used formulas of cubes which are sum of cubes and difference of cubes:-
${{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)$ and ${{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)$
Note: Formula for the expansion of the cube of difference of the terms can be derived easily by replacing the second term with a negative of the given second term.
Example: we can write ${{(x\text{ }-\text{ }y)}^{3}}$as ${{(x+\text{ }(-\text{ }y))}^{3}}$, now we can use formula in equation$\left( 1 \right)$ to calculate its expansion by only replacing y with –y in formula. After calculation, we get the final expansion of ${{(x\text{ }-\text{ }y)}^{3}}$as ${{x}^{3}}\text{ }-\text{ }{{y}^{3}}\text{ }-\text{ }3xy(x\text{ }-\text{ }y)$.
Complete step-by-step answer:
We know the formula of expansion of cubes which is
${{(x\text{ }+\text{ }y)}^{3}}\text{ }=\text{ }{{x}^{3}}\text{ }+{{y}^{3}}\text{ }+\text{ }3xy(x\text{ }+\text{ }y)$ ………………$\left( 1 \right)$
So here we will replace x with 3a and y with 4b.
Therefore,
$x\text{ }=\text{ }3a$
$y\text{ }=\text{ }4b$
Now the expansion becomes;
${{(3a\text{ }+\text{ }4b)}^{3}}\text{ }=\text{ }{{(3a)}^{3}}\text{ }+{{(4b)}^{3}}\text{ }+\text{ }3\times 3a\times 4b(3a+\text{ }4b)$
$=\text{ }27{{a}^{3}}\text{ }+64{{b}^{3}}\text{ }+\text{ }3\times 3a\times 4b\times 3a+3\times 3a\times 4b\times 4b$
$=\text{ }27{{a}^{3}}\text{ }+64{{b}^{3}}\text{ }+\text{ }108{{a}^{2}}b+144a{{b}^{2}}$
So, the expansion of ${{(3a\text{ }+\text{ }4b)}^{3}}$is $27{{a}^{3}}\text{ }+64{{b}^{3}}\text{ }+\text{ }108{{a}^{2}}b+144a{{b}^{2}}$.
Additional information: There are some other commonly used formulas of cubes which are sum of cubes and difference of cubes:-
${{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)$ and ${{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)$
Note: Formula for the expansion of the cube of difference of the terms can be derived easily by replacing the second term with a negative of the given second term.
Example: we can write ${{(x\text{ }-\text{ }y)}^{3}}$as ${{(x+\text{ }(-\text{ }y))}^{3}}$, now we can use formula in equation$\left( 1 \right)$ to calculate its expansion by only replacing y with –y in formula. After calculation, we get the final expansion of ${{(x\text{ }-\text{ }y)}^{3}}$as ${{x}^{3}}\text{ }-\text{ }{{y}^{3}}\text{ }-\text{ }3xy(x\text{ }-\text{ }y)$.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The plural of Chief is Chieves A True B False class 7 english CBSE

Write a letter to the editor of the national daily class 7 english CBSE


