
How do you expand the given binomial ${{\left( 2x+4 \right)}^{3}}$?
Answer
544.5k+ views
Hint: We start solving the problem by recalling the binomial expansion of ${{\left( a+b \right)}^{n}}$ as ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+...+{}^{n}{{C}_{n}}{{b}^{n}}$. We use this expansion for the given binomial and then make the necessary calculations to proceed through the problem. We then make use of the results that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$ and $0!=1$ in the obtained result to proceed further through the problem. We then make the necessary calculations to get the required expansion of the given binomial.
Complete step by step answer:
According to the problem, we are asked to expand the given binomial ${{\left( 2x+4 \right)}^{3}}$.
We have given the binomial ${{\left( 2x+4 \right)}^{3}}$ ---(1).
From the binomial expansion of ${{\left( a+b \right)}^{n}}$, we know that ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+...+{}^{n}{{C}_{n}}{{b}^{n}}$. Let us use this result in equation (1).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{3-1}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{3-2}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{2}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{1}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 4{{x}^{2}} \right)\left( 4 \right)+{}^{3}{{C}_{2}}\left( 2x \right)\left( 16 \right)+{}^{3}{{C}_{3}}\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 16{{x}^{2}} \right)+{}^{3}{{C}_{2}}\left( 32x \right)+{}^{3}{{C}_{3}}\left( 64 \right)$ ---(2).
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$ and $0!=1$. Let us use these results in equation (2).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( \dfrac{3!}{0!3!} \right)\left( 8{{x}^{3}} \right)+\left( \dfrac{3!}{1!2!} \right)\left( 16{{x}^{2}} \right)+\left( \dfrac{3!}{2!1!} \right)\left( 32x \right)+\left( \dfrac{3!}{3!0!} \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( 1 \right)\left( 8{{x}^{3}} \right)+\left( 3 \right)\left( 16{{x}^{2}} \right)+\left( 3 \right)\left( 32x \right)+\left( 1 \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=8{{x}^{3}}+48{{x}^{2}}+96x+64$.
So, we have found the expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
$\therefore $ The required expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
Note:
Whenever we get this type of problem, we make use of the binomial expansion of ${{\left( a+b \right)}^{n}}$ to get the required answer. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem by making use of the pascal’s triangle which will also give the similar result. Similarly, we can expect problems to find the expansion of the given binomial ${{\left( 2x+\dfrac{3}{x} \right)}^{4}}$.
Complete step by step answer:
According to the problem, we are asked to expand the given binomial ${{\left( 2x+4 \right)}^{3}}$.
We have given the binomial ${{\left( 2x+4 \right)}^{3}}$ ---(1).
From the binomial expansion of ${{\left( a+b \right)}^{n}}$, we know that ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+...+{}^{n}{{C}_{n}}{{b}^{n}}$. Let us use this result in equation (1).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{3-1}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{3-2}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{2}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{1}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 4{{x}^{2}} \right)\left( 4 \right)+{}^{3}{{C}_{2}}\left( 2x \right)\left( 16 \right)+{}^{3}{{C}_{3}}\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 16{{x}^{2}} \right)+{}^{3}{{C}_{2}}\left( 32x \right)+{}^{3}{{C}_{3}}\left( 64 \right)$ ---(2).
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$ and $0!=1$. Let us use these results in equation (2).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( \dfrac{3!}{0!3!} \right)\left( 8{{x}^{3}} \right)+\left( \dfrac{3!}{1!2!} \right)\left( 16{{x}^{2}} \right)+\left( \dfrac{3!}{2!1!} \right)\left( 32x \right)+\left( \dfrac{3!}{3!0!} \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( 1 \right)\left( 8{{x}^{3}} \right)+\left( 3 \right)\left( 16{{x}^{2}} \right)+\left( 3 \right)\left( 32x \right)+\left( 1 \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=8{{x}^{3}}+48{{x}^{2}}+96x+64$.
So, we have found the expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
$\therefore $ The required expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
Note:
Whenever we get this type of problem, we make use of the binomial expansion of ${{\left( a+b \right)}^{n}}$ to get the required answer. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem by making use of the pascal’s triangle which will also give the similar result. Similarly, we can expect problems to find the expansion of the given binomial ${{\left( 2x+\dfrac{3}{x} \right)}^{4}}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

