
How do you expand the given binomial ${{\left( 2x+4 \right)}^{3}}$?
Answer
557.7k+ views
Hint: We start solving the problem by recalling the binomial expansion of ${{\left( a+b \right)}^{n}}$ as ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+...+{}^{n}{{C}_{n}}{{b}^{n}}$. We use this expansion for the given binomial and then make the necessary calculations to proceed through the problem. We then make use of the results that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$ and $0!=1$ in the obtained result to proceed further through the problem. We then make the necessary calculations to get the required expansion of the given binomial.
Complete step by step answer:
According to the problem, we are asked to expand the given binomial ${{\left( 2x+4 \right)}^{3}}$.
We have given the binomial ${{\left( 2x+4 \right)}^{3}}$ ---(1).
From the binomial expansion of ${{\left( a+b \right)}^{n}}$, we know that ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+...+{}^{n}{{C}_{n}}{{b}^{n}}$. Let us use this result in equation (1).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{3-1}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{3-2}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{2}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{1}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 4{{x}^{2}} \right)\left( 4 \right)+{}^{3}{{C}_{2}}\left( 2x \right)\left( 16 \right)+{}^{3}{{C}_{3}}\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 16{{x}^{2}} \right)+{}^{3}{{C}_{2}}\left( 32x \right)+{}^{3}{{C}_{3}}\left( 64 \right)$ ---(2).
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$ and $0!=1$. Let us use these results in equation (2).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( \dfrac{3!}{0!3!} \right)\left( 8{{x}^{3}} \right)+\left( \dfrac{3!}{1!2!} \right)\left( 16{{x}^{2}} \right)+\left( \dfrac{3!}{2!1!} \right)\left( 32x \right)+\left( \dfrac{3!}{3!0!} \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( 1 \right)\left( 8{{x}^{3}} \right)+\left( 3 \right)\left( 16{{x}^{2}} \right)+\left( 3 \right)\left( 32x \right)+\left( 1 \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=8{{x}^{3}}+48{{x}^{2}}+96x+64$.
So, we have found the expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
$\therefore $ The required expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
Note:
Whenever we get this type of problem, we make use of the binomial expansion of ${{\left( a+b \right)}^{n}}$ to get the required answer. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem by making use of the pascal’s triangle which will also give the similar result. Similarly, we can expect problems to find the expansion of the given binomial ${{\left( 2x+\dfrac{3}{x} \right)}^{4}}$.
Complete step by step answer:
According to the problem, we are asked to expand the given binomial ${{\left( 2x+4 \right)}^{3}}$.
We have given the binomial ${{\left( 2x+4 \right)}^{3}}$ ---(1).
From the binomial expansion of ${{\left( a+b \right)}^{n}}$, we know that ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+...+{}^{n}{{C}_{n}}{{b}^{n}}$. Let us use this result in equation (1).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{3-1}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{3-2}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 2x \right)}^{3}}+{}^{3}{{C}_{1}}{{\left( 2x \right)}^{2}}\left( 4 \right)+{}^{3}{{C}_{2}}{{\left( 2x \right)}^{1}}{{\left( 4 \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 4 \right)}^{3}}$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 4{{x}^{2}} \right)\left( 4 \right)+{}^{3}{{C}_{2}}\left( 2x \right)\left( 16 \right)+{}^{3}{{C}_{3}}\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}={}^{3}{{C}_{0}}\left( 8{{x}^{3}} \right)+{}^{3}{{C}_{1}}\left( 16{{x}^{2}} \right)+{}^{3}{{C}_{2}}\left( 32x \right)+{}^{3}{{C}_{3}}\left( 64 \right)$ ---(2).
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, $n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times ......\times 2\times 1$ and $0!=1$. Let us use these results in equation (2).
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( \dfrac{3!}{0!3!} \right)\left( 8{{x}^{3}} \right)+\left( \dfrac{3!}{1!2!} \right)\left( 16{{x}^{2}} \right)+\left( \dfrac{3!}{2!1!} \right)\left( 32x \right)+\left( \dfrac{3!}{3!0!} \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=\left( 1 \right)\left( 8{{x}^{3}} \right)+\left( 3 \right)\left( 16{{x}^{2}} \right)+\left( 3 \right)\left( 32x \right)+\left( 1 \right)\left( 64 \right)$.
$\Rightarrow {{\left( 2x+4 \right)}^{3}}=8{{x}^{3}}+48{{x}^{2}}+96x+64$.
So, we have found the expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
$\therefore $ The required expansion of the given binomial ${{\left( 2x+4 \right)}^{3}}$ as $8{{x}^{3}}+48{{x}^{2}}+96x+64$.
Note:
Whenever we get this type of problem, we make use of the binomial expansion of ${{\left( a+b \right)}^{n}}$ to get the required answer. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem by making use of the pascal’s triangle which will also give the similar result. Similarly, we can expect problems to find the expansion of the given binomial ${{\left( 2x+\dfrac{3}{x} \right)}^{4}}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

