
Expand the expression ${\left( {2x - 3} \right)^6}$
Answer
507.9k+ views
Hint: In this question, we are given a binomial and we have to expand it using the binomial theorem. Here the power of the binomial is 6. The formula for binomial theorem is given by
$ {\left( {a + b} \right)^n} = \sum\limits_{r = 0}^n {\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right){a^{n - r}}{b^r}} $, where $\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Here, we have $a$ equal to $2x$ and $b$ equal to $3$ and $n$ equal to $6$. Using this formula we can expand the given binomial.
Complete step by step solution:
In this question, we are given a binomial in terms of x with power 6 and we need to expand it.
The given binomial is: ${\left( {2x - 3} \right)^6}$
To expand this binomial, we are going to use the binomial theorem.
So, let us see what binomial theorem is.
Binomial theorem is used to expand an expression raised to any positive finite power. Let us take an expression ${\left( {a + b} \right)^n}$. So, it can be expanded using binomial theorem as
$ {\left( {a + b} \right)^n} = \sum\limits_{r = 0}^n {\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right){a^{n - r}}{b^r}} $, where $\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Here, our binomial is ${\left( {2x - 3} \right)^6}$. So, here $a = 2x$ and $b = 3$.
So therefore, expansion of ${\left( {2x - 3} \right)^6}$ is
$
\Rightarrow {\left( {2x - 3} \right)^6} = \sum\limits_{r = 0}^6 {\left( {\begin{array}{*{20}{c}}
6 \\
r
\end{array}} \right)} {\left( {2x} \right)^{6 - r}}{\left( 3 \right)^r} \\
\Rightarrow {\left( {2x - 3} \right)^6} = \left( {\begin{array}{*{20}{c}}
6 \\
0
\end{array}} \right){\left( {2x} \right)^{6 - 0}}{\left( 3 \right)^0} - \left( {\begin{array}{*{20}{c}}
6 \\
1
\end{array}} \right){\left( {2x} \right)^{6 - 1}}{\left( 3 \right)^1} + \left( {\begin{array}{*{20}{c}}
6 \\
2
\end{array}} \right){\left( {2x} \right)^{6 - 2}}{\left( 3 \right)^2} - \left( {\begin{array}{*{20}{c}}
6 \\
3
\end{array}} \right){\left( {2x} \right)^{6 - 3}}{\left( 3 \right)^3} + \left( {\begin{array}{*{20}{c}}
6 \\
4
\end{array}} \right){\left( {2x} \right)^{6 - 4}}{\left( 3 \right)^4} - \left( {\begin{array}{*{20}{c}}
6 \\
5
\end{array}} \right){\left( {2x} \right)^{6 - 5}}{\left( 3 \right)^5} \\
+ \left( {\begin{array}{*{20}{c}}
6 \\
6
\end{array}} \right){\left( {2x} \right)^{6 - 6}}{\left( 3 \right)^6} \\
\Rightarrow {\left( {2x - 3} \right)^6} = 1{\left( {2x} \right)^6}\left( 1 \right) - 6{\left( {2x} \right)^5}\left( 3 \right) + 15{\left( {2x} \right)^4}\left( 9 \right) - 20{\left( {2x} \right)^3}\left( {27} \right) + 15{\left( {2x} \right)^2}\left( {81} \right) - 6\left( {2x} \right)\left( {243} \right) + \\
1{\left( {2x} \right)^0}\left( {729} \right) \\
\Rightarrow {\left( {2x - 3} \right)^6} = 64{x^6} - 576{x^5} + 2160{x^4} - 4320{x^3} + 4860{x^2} - 2916x + 729 \\
$
Hence, we have found the expansion of ${\left( {2x - 3} \right)^6}$ using the binomial theorem. Therefore, the expansion of ${\left( {2x - 3} \right)^6}$ is $64{x^6} - 576{x^5} + 2160{x^4} - 4320{x^3} + 4860{x^2} - 2916x + 729$.
Note:
Here, note that the given binomial is of the form ${\left( {a - b} \right)^n}$. So, we need to change the signs in the given formula. We have to use minus sign for every even term, that is for second term, fourth term, sixth term and so, we will use the minus sign. For example: if we have $n = 10$, then the signs will be as
$ + \left( {1st} \right) - \left( {2nd} \right) + \left( {3rd} \right) - \left( {4th} \right) + \left( {5th} \right) - \left( {6th} \right) + \left( {7th} \right) - \left( {8th} \right) + \left( {9th} \right) - \left( {10th} \right) + \left( {11th} \right)$.
$ {\left( {a + b} \right)^n} = \sum\limits_{r = 0}^n {\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right){a^{n - r}}{b^r}} $, where $\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Here, we have $a$ equal to $2x$ and $b$ equal to $3$ and $n$ equal to $6$. Using this formula we can expand the given binomial.
Complete step by step solution:
In this question, we are given a binomial in terms of x with power 6 and we need to expand it.
The given binomial is: ${\left( {2x - 3} \right)^6}$
To expand this binomial, we are going to use the binomial theorem.
So, let us see what binomial theorem is.
Binomial theorem is used to expand an expression raised to any positive finite power. Let us take an expression ${\left( {a + b} \right)^n}$. So, it can be expanded using binomial theorem as
$ {\left( {a + b} \right)^n} = \sum\limits_{r = 0}^n {\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right){a^{n - r}}{b^r}} $, where $\left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Here, our binomial is ${\left( {2x - 3} \right)^6}$. So, here $a = 2x$ and $b = 3$.
So therefore, expansion of ${\left( {2x - 3} \right)^6}$ is
$
\Rightarrow {\left( {2x - 3} \right)^6} = \sum\limits_{r = 0}^6 {\left( {\begin{array}{*{20}{c}}
6 \\
r
\end{array}} \right)} {\left( {2x} \right)^{6 - r}}{\left( 3 \right)^r} \\
\Rightarrow {\left( {2x - 3} \right)^6} = \left( {\begin{array}{*{20}{c}}
6 \\
0
\end{array}} \right){\left( {2x} \right)^{6 - 0}}{\left( 3 \right)^0} - \left( {\begin{array}{*{20}{c}}
6 \\
1
\end{array}} \right){\left( {2x} \right)^{6 - 1}}{\left( 3 \right)^1} + \left( {\begin{array}{*{20}{c}}
6 \\
2
\end{array}} \right){\left( {2x} \right)^{6 - 2}}{\left( 3 \right)^2} - \left( {\begin{array}{*{20}{c}}
6 \\
3
\end{array}} \right){\left( {2x} \right)^{6 - 3}}{\left( 3 \right)^3} + \left( {\begin{array}{*{20}{c}}
6 \\
4
\end{array}} \right){\left( {2x} \right)^{6 - 4}}{\left( 3 \right)^4} - \left( {\begin{array}{*{20}{c}}
6 \\
5
\end{array}} \right){\left( {2x} \right)^{6 - 5}}{\left( 3 \right)^5} \\
+ \left( {\begin{array}{*{20}{c}}
6 \\
6
\end{array}} \right){\left( {2x} \right)^{6 - 6}}{\left( 3 \right)^6} \\
\Rightarrow {\left( {2x - 3} \right)^6} = 1{\left( {2x} \right)^6}\left( 1 \right) - 6{\left( {2x} \right)^5}\left( 3 \right) + 15{\left( {2x} \right)^4}\left( 9 \right) - 20{\left( {2x} \right)^3}\left( {27} \right) + 15{\left( {2x} \right)^2}\left( {81} \right) - 6\left( {2x} \right)\left( {243} \right) + \\
1{\left( {2x} \right)^0}\left( {729} \right) \\
\Rightarrow {\left( {2x - 3} \right)^6} = 64{x^6} - 576{x^5} + 2160{x^4} - 4320{x^3} + 4860{x^2} - 2916x + 729 \\
$
Hence, we have found the expansion of ${\left( {2x - 3} \right)^6}$ using the binomial theorem. Therefore, the expansion of ${\left( {2x - 3} \right)^6}$ is $64{x^6} - 576{x^5} + 2160{x^4} - 4320{x^3} + 4860{x^2} - 2916x + 729$.
Note:
Here, note that the given binomial is of the form ${\left( {a - b} \right)^n}$. So, we need to change the signs in the given formula. We have to use minus sign for every even term, that is for second term, fourth term, sixth term and so, we will use the minus sign. For example: if we have $n = 10$, then the signs will be as
$ + \left( {1st} \right) - \left( {2nd} \right) + \left( {3rd} \right) - \left( {4th} \right) + \left( {5th} \right) - \left( {6th} \right) + \left( {7th} \right) - \left( {8th} \right) + \left( {9th} \right) - \left( {10th} \right) + \left( {11th} \right)$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

