
How do you expand the binomial \[{{\left( x-y \right)}^{10}}\] ?
Answer
547.8k+ views
Hint: From the given question we are asked to expand the binomial\[{{\left( x-y \right)}^{10}}\]. To expand this, we have to use binomial theorem i.e., the expansion of \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}.\left( {{a}^{n-k}}{{b}^{k}} \right)}\]. Here we have to substitute x in place of a and \[\left( -y \right)\] in place of b. By using this formula in the binomial theorem we can expand the above binomial\[{{\left( x-y \right)}^{10}}\].
Complete step by step solution:
From the given question we have to expand the binomial \[{{\left( x-y \right)}^{10}}\]
As we know that we have to expand this by using binomial theorem. Binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\] into a sum involving terms of the form \[c{{a}^{x}}{{b}^{y}}\], where the exponents x and y are nonnegative integers with \[x+y=n\], and the coefficient c of each term is a specific positive integer depending on n and x. the coefficient c in the term of \[c{{a}^{x}}{{b}^{y}}\] is known as the binomial coefficient.
Now, by using the above discussed binomial theorem we have to expand the given binomial question\[{{\left( x-y \right)}^{10}}\].
\[\Rightarrow {{\left( x-y \right)}^{10}}=\sum\limits_{k=0}^{10}{\dfrac{10!}{\left( 10-k \right)!10!}}\times {{x}^{10-k}}\times {{\left( -y \right)}^{10}}\]
Now we have to expand the summation.
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{10}}=\dfrac{10!}{\left( 10-0 \right)!0!}.\left( {{x}^{10-0}} \right).{{\left( -y \right)}^{0}}+\dfrac{10!}{\left( 10-1 \right)!1!}.\left( {{x}^{10-1}} \right).{{\left( -y \right)}^{1}}+\dfrac{10!}{\left( 10-2 \right)!2!}.\left( {{x}^{10-2}} \right).{{\left( -y \right)}^{2}} \\
& +\dfrac{10!}{\left( 10-3 \right)!3!}.\left( {{x}^{10-3}} \right).{{\left( -y \right)}^{3}}+\dfrac{10!}{\left( 10-4 \right)!4!}.\left( {{x}^{10-4}} \right).{{\left( -y \right)}^{4}}+....+\dfrac{10!}{\left( 10-10 \right)!10!}.\left( {{x}^{10-10}} \right).{{\left( -y \right)}^{10}} \\
\end{align}\]
Now, we have to simplify the above form.
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{10}}=\left( 1.{{\left( -y \right)}^{0}}.{{x}^{10}} \right)+\left( 10.{{\left( -y \right)}^{1}}.{{x}^{9}} \right)+\left( 45.{{\left( -y \right)}^{2}}.{{x}^{8}} \right)+\left( 120.{{\left( -y \right)}^{3}}.{{x}^{7}} \right) \\
& +\left( 210.{{\left( -y \right)}^{4}}.{{x}^{6}} \right)+\left( 252.{{\left( -y \right)}^{5}}.{{x}^{5}} \right)....+\left( 1.{{\left( -y \right)}^{10}}.{{x}^{0}} \right) \\
\end{align}\]
After the simplification the above binomial expression is
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{10}}={{x}^{10}}-10{{x}^{10}}y+45{{x}^{8}}{{y}^{2}}-120{{x}^{7}}{{y}^{3}}+210{{x}^{6}}{{y}^{4}} \\
& -252{{x}^{5}}{{y}^{5}}+210{{x}^{4}}{{y}^{6}}-120{{x}^{3}}{{y}^{7}}+45{{x}^{2}}{{y}^{8}}-10x{{y}^{9}}+y_{{}}^{10} \\
\end{align}\]
Note: Students should know the expansions and binomial theorem. Student should be careful with signs and calculation. Students must be careful in using the formulae of binomial theorem.
Students should not do any calculation mistakes and they must know formula like \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}.\left( {{a}^{n-k}}{{b}^{k}} \right)}\] in binomial theorem to solve questions of this kind.
Complete step by step solution:
From the given question we have to expand the binomial \[{{\left( x-y \right)}^{10}}\]
As we know that we have to expand this by using binomial theorem. Binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\] into a sum involving terms of the form \[c{{a}^{x}}{{b}^{y}}\], where the exponents x and y are nonnegative integers with \[x+y=n\], and the coefficient c of each term is a specific positive integer depending on n and x. the coefficient c in the term of \[c{{a}^{x}}{{b}^{y}}\] is known as the binomial coefficient.
Now, by using the above discussed binomial theorem we have to expand the given binomial question\[{{\left( x-y \right)}^{10}}\].
\[\Rightarrow {{\left( x-y \right)}^{10}}=\sum\limits_{k=0}^{10}{\dfrac{10!}{\left( 10-k \right)!10!}}\times {{x}^{10-k}}\times {{\left( -y \right)}^{10}}\]
Now we have to expand the summation.
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{10}}=\dfrac{10!}{\left( 10-0 \right)!0!}.\left( {{x}^{10-0}} \right).{{\left( -y \right)}^{0}}+\dfrac{10!}{\left( 10-1 \right)!1!}.\left( {{x}^{10-1}} \right).{{\left( -y \right)}^{1}}+\dfrac{10!}{\left( 10-2 \right)!2!}.\left( {{x}^{10-2}} \right).{{\left( -y \right)}^{2}} \\
& +\dfrac{10!}{\left( 10-3 \right)!3!}.\left( {{x}^{10-3}} \right).{{\left( -y \right)}^{3}}+\dfrac{10!}{\left( 10-4 \right)!4!}.\left( {{x}^{10-4}} \right).{{\left( -y \right)}^{4}}+....+\dfrac{10!}{\left( 10-10 \right)!10!}.\left( {{x}^{10-10}} \right).{{\left( -y \right)}^{10}} \\
\end{align}\]
Now, we have to simplify the above form.
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{10}}=\left( 1.{{\left( -y \right)}^{0}}.{{x}^{10}} \right)+\left( 10.{{\left( -y \right)}^{1}}.{{x}^{9}} \right)+\left( 45.{{\left( -y \right)}^{2}}.{{x}^{8}} \right)+\left( 120.{{\left( -y \right)}^{3}}.{{x}^{7}} \right) \\
& +\left( 210.{{\left( -y \right)}^{4}}.{{x}^{6}} \right)+\left( 252.{{\left( -y \right)}^{5}}.{{x}^{5}} \right)....+\left( 1.{{\left( -y \right)}^{10}}.{{x}^{0}} \right) \\
\end{align}\]
After the simplification the above binomial expression is
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{10}}={{x}^{10}}-10{{x}^{10}}y+45{{x}^{8}}{{y}^{2}}-120{{x}^{7}}{{y}^{3}}+210{{x}^{6}}{{y}^{4}} \\
& -252{{x}^{5}}{{y}^{5}}+210{{x}^{4}}{{y}^{6}}-120{{x}^{3}}{{y}^{7}}+45{{x}^{2}}{{y}^{8}}-10x{{y}^{9}}+y_{{}}^{10} \\
\end{align}\]
Note: Students should know the expansions and binomial theorem. Student should be careful with signs and calculation. Students must be careful in using the formulae of binomial theorem.
Students should not do any calculation mistakes and they must know formula like \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}.\left( {{a}^{n-k}}{{b}^{k}} \right)}\] in binomial theorem to solve questions of this kind.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

