
How do you expand the binomial \[{{\left( x+4 \right)}^{4}}\]?
Answer
546.3k+ views
Hint: This type of question is based on the concept of binomials. We can solve this question with the help of the expansion of binomial, that is, \[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{}^{n}{{C}_{n}}{{b}^{n}}\]. And from the question, we get, a=x, b=4 and n=4. Then, substitute these values in the binomial expansion. Simplify the obtained equation using factorial, that is,\[n!=n.\left( n-1 \right).\left( n-2 \right).........3.2.1\]. Then take the common terms outside the bracket, if needed.
Complete step by step answer:
It is given, the binomial is \[{{\left( x+4 \right)}^{4}}\]. And we have been asked to find the expansion of the given binomial. We know that, the formula of the binomial expansion is \[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{}^{n}{{C}_{n}}{{b}^{n}}\].
Now substitute, a=x, b=4, and n=4.
We get,
\[{{\left( x+4 \right)}^{4}}={}^{4}{{C}_{0}}{{x}^{4}}+{}^{4}{{C}_{1}}{{x}^{4-1}}\left( 4 \right)+{}^{4}{{C}_{2}}{{x}^{4-2}}{{\left( 4 \right)}^{2}}+{}^{4}{{C}_{3}}{{x}^{4-3}}{{\left( 4 \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 4 \right)}^{4}}\].
we know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Using this formula, we have to individually find the values of \[{}^{4}{{C}_{0}},{}^{4}{{C}_{1}},{}^{4}{{C}_{2}},{}^{4}{{C}_{3}}\] and \[{}^{4}{{C}_{4}}\].
First consider \[{}^{4}{{C}_{0}}\].
\[{}^{4}{{C}_{0}}=\dfrac{4!}{0!\left( 4-0 \right)!}\]
We know that, \[0!=1\].
\[\Rightarrow {}^{4}{{C}_{0}}=\dfrac{4!}{1\times 4!}\]
Canceling out \[4!\] on the numerator and the denominator, we get,
\[{}^{4}{{C}_{0}}=1\].
Now consider, \[{}^{4}{{C}_{1}}\].
\[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 4-1 \right)!}\].
We know that \[1!=1\].
\[\Rightarrow {}^{4}{{C}_{1}}=\dfrac{4!}{1\times 3!}\].
Expanding the factorial, we get, \[{}^{4}{{C}_{1}}=\dfrac{4\times 3\times 2\times 1}{3\times 2\times 1}\].
\[\Rightarrow {}^{4}{{C}_{1}}=4\].
Then consider, \[{}^{4}{{C}_{2}}\].
\[{}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}\].
\[\Rightarrow {}^{4}{{C}_{2}}=\dfrac{4!}{2!2!}\].
Expanding the factorial, we get, \[{}^{4}{{C}_{2}}=\dfrac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1}\].
Canceling the common terms from numerator and denominator, we get,
\[{}^{4}{{C}_{2}}=3\times 2\].
\[\Rightarrow {}^{4}{{C}_{2}}=6\].
Then consider, \[{}^{4}{{C}_{3}}\]
\[{}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}\]
\[\Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!1!}\]
We know that, \[1!=1\].
\[\Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!}\]
Expanding the factorial, we get, \[{}^{4}{{C}_{3}}=\dfrac{4\times 3\times 2\times 1}{3\times 2\times 1}\].
Canceling the common terms from numerator and denominator, we get,
\[{}^{4}{{C}_{3}}=4\].
Then consider, \[{}^{4}{{C}_{4}}\].
\[{}^{4}{{C}_{4}}=\dfrac{4!}{4!\left( 4-4 \right)!}\]
\[\Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{4!0!}\]
We know that, \[0!=1\].
\[\Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{1\times 4!}\]
Canceling out \[4!\] on the numerator and the denominator, we get,
\[{}^{4}{{C}_{4}}=1\].
Now substitute all the obtained values in the binomial expansion of \[{{\left( x+4 \right)}^{4}}\], that is,
\[{{\left( x+4 \right)}^{4}}={}^{4}{{C}_{0}}{{x}^{4}}+{}^{4}{{C}_{1}}{{x}^{4-1}}\left( 4 \right)+{}^{4}{{C}_{2}}{{x}^{4-2}}{{\left( 4 \right)}^{2}}+{}^{4}{{C}_{3}}{{x}^{4-3}}{{\left( 4 \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 4 \right)}^{4}}\]
\[=1{{x}^{4}}+4{{x}^{4-1}}\left( 4 \right)+6{{x}^{4-2}}{{\left( 4 \right)}^{2}}+4\left( x \right){{\left( 4 \right)}^{3}}+1{{\left( 4 \right)}^{4}}\]
\[={{\left( x \right)}^{4}}+4{{\left( x \right)}^{3}}\left( 4 \right)+6{{\left( x \right)}^{2}}{{\left( 4 \right)}^{2}}+4\left( x \right){{\left( 4 \right)}^{3}}+{{\left( 4 \right)}^{4}}\]
Since \[{{4}^{4}}=256,{{4}^{3}}=64\] and \[{{4}^{2}}=16\], we get
\[{{\left( x+4 \right)}^{4}}={{x}^{4}}+16{{x}^{3}}+6\times 16{{x}^{2}}+256x+256\]
\[\Rightarrow {{\left( x+4 \right)}^{4}}={{x}^{4}}+16{{x}^{3}}+96{{x}^{2}}+256x+256\]
\[\therefore \]The expansion of the binomial \[{{\left( x+4 \right)}^{4}}\] is \[{{x}^{4}}+16{{x}^{3}}+96{{x}^{2}}+256x+256\] .
Note: Whenever we get this type of problem, we need to make sure about the sign and the power. The factorial should be performed separately to avoid confusion. Any type of problems related to binomial can be expanded using this method. Also, we should avoid calculation mistakes to obtain accurate answers. Avoid mistakes based on sign convention. Similarly, we can expect problems to find the solution for the binomial \[{{\left( 3x-1 \right)}^{4}}\].
Complete step by step answer:
It is given, the binomial is \[{{\left( x+4 \right)}^{4}}\]. And we have been asked to find the expansion of the given binomial. We know that, the formula of the binomial expansion is \[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{}^{n}{{C}_{n}}{{b}^{n}}\].
Now substitute, a=x, b=4, and n=4.
We get,
\[{{\left( x+4 \right)}^{4}}={}^{4}{{C}_{0}}{{x}^{4}}+{}^{4}{{C}_{1}}{{x}^{4-1}}\left( 4 \right)+{}^{4}{{C}_{2}}{{x}^{4-2}}{{\left( 4 \right)}^{2}}+{}^{4}{{C}_{3}}{{x}^{4-3}}{{\left( 4 \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 4 \right)}^{4}}\].
we know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Using this formula, we have to individually find the values of \[{}^{4}{{C}_{0}},{}^{4}{{C}_{1}},{}^{4}{{C}_{2}},{}^{4}{{C}_{3}}\] and \[{}^{4}{{C}_{4}}\].
First consider \[{}^{4}{{C}_{0}}\].
\[{}^{4}{{C}_{0}}=\dfrac{4!}{0!\left( 4-0 \right)!}\]
We know that, \[0!=1\].
\[\Rightarrow {}^{4}{{C}_{0}}=\dfrac{4!}{1\times 4!}\]
Canceling out \[4!\] on the numerator and the denominator, we get,
\[{}^{4}{{C}_{0}}=1\].
Now consider, \[{}^{4}{{C}_{1}}\].
\[{}^{4}{{C}_{1}}=\dfrac{4!}{1!\left( 4-1 \right)!}\].
We know that \[1!=1\].
\[\Rightarrow {}^{4}{{C}_{1}}=\dfrac{4!}{1\times 3!}\].
Expanding the factorial, we get, \[{}^{4}{{C}_{1}}=\dfrac{4\times 3\times 2\times 1}{3\times 2\times 1}\].
\[\Rightarrow {}^{4}{{C}_{1}}=4\].
Then consider, \[{}^{4}{{C}_{2}}\].
\[{}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}\].
\[\Rightarrow {}^{4}{{C}_{2}}=\dfrac{4!}{2!2!}\].
Expanding the factorial, we get, \[{}^{4}{{C}_{2}}=\dfrac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1}\].
Canceling the common terms from numerator and denominator, we get,
\[{}^{4}{{C}_{2}}=3\times 2\].
\[\Rightarrow {}^{4}{{C}_{2}}=6\].
Then consider, \[{}^{4}{{C}_{3}}\]
\[{}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}\]
\[\Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!1!}\]
We know that, \[1!=1\].
\[\Rightarrow {}^{4}{{C}_{3}}=\dfrac{4!}{3!}\]
Expanding the factorial, we get, \[{}^{4}{{C}_{3}}=\dfrac{4\times 3\times 2\times 1}{3\times 2\times 1}\].
Canceling the common terms from numerator and denominator, we get,
\[{}^{4}{{C}_{3}}=4\].
Then consider, \[{}^{4}{{C}_{4}}\].
\[{}^{4}{{C}_{4}}=\dfrac{4!}{4!\left( 4-4 \right)!}\]
\[\Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{4!0!}\]
We know that, \[0!=1\].
\[\Rightarrow {}^{4}{{C}_{4}}=\dfrac{4!}{1\times 4!}\]
Canceling out \[4!\] on the numerator and the denominator, we get,
\[{}^{4}{{C}_{4}}=1\].
Now substitute all the obtained values in the binomial expansion of \[{{\left( x+4 \right)}^{4}}\], that is,
\[{{\left( x+4 \right)}^{4}}={}^{4}{{C}_{0}}{{x}^{4}}+{}^{4}{{C}_{1}}{{x}^{4-1}}\left( 4 \right)+{}^{4}{{C}_{2}}{{x}^{4-2}}{{\left( 4 \right)}^{2}}+{}^{4}{{C}_{3}}{{x}^{4-3}}{{\left( 4 \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 4 \right)}^{4}}\]
\[=1{{x}^{4}}+4{{x}^{4-1}}\left( 4 \right)+6{{x}^{4-2}}{{\left( 4 \right)}^{2}}+4\left( x \right){{\left( 4 \right)}^{3}}+1{{\left( 4 \right)}^{4}}\]
\[={{\left( x \right)}^{4}}+4{{\left( x \right)}^{3}}\left( 4 \right)+6{{\left( x \right)}^{2}}{{\left( 4 \right)}^{2}}+4\left( x \right){{\left( 4 \right)}^{3}}+{{\left( 4 \right)}^{4}}\]
Since \[{{4}^{4}}=256,{{4}^{3}}=64\] and \[{{4}^{2}}=16\], we get
\[{{\left( x+4 \right)}^{4}}={{x}^{4}}+16{{x}^{3}}+6\times 16{{x}^{2}}+256x+256\]
\[\Rightarrow {{\left( x+4 \right)}^{4}}={{x}^{4}}+16{{x}^{3}}+96{{x}^{2}}+256x+256\]
\[\therefore \]The expansion of the binomial \[{{\left( x+4 \right)}^{4}}\] is \[{{x}^{4}}+16{{x}^{3}}+96{{x}^{2}}+256x+256\] .
Note: Whenever we get this type of problem, we need to make sure about the sign and the power. The factorial should be performed separately to avoid confusion. Any type of problems related to binomial can be expanded using this method. Also, we should avoid calculation mistakes to obtain accurate answers. Avoid mistakes based on sign convention. Similarly, we can expect problems to find the solution for the binomial \[{{\left( 3x-1 \right)}^{4}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

