
Expand \[\log \left( {1 + x} \right)\] in ascending powers of \[x\] up to the term containing \[{x^4}\].
Answer
480k+ views
Hint: We will take \[f\left( x \right) = \log \left( {1 + x} \right)\]. Then we will do successive differentiation of \[f\left( x \right)\] to find the values of \[{f'}\left( x \right)\], \[{f^{''}}\left( x \right)\], \[{f^{'''}}\left( x \right)\] and \[{f^{''''}}\left( x \right)\]. Putting x equals to zero, we will then find the values of \[{f'}\left( 0 \right)\], \[{f^{''}}\left( 0 \right)\], \[{f^{'''}}\left( 0 \right)\] and\[{f^{''''}}\left( 0 \right)\]. Putting all these values in Maclaurin’s theorem we will get the required expansion of \[\log \left( {1 + x} \right)\].
Complete step by step answer:
Let \[f\left( x \right) = \log \left( {1 + x} \right)\]
Putting \[x = 0\], we get
\[ \Rightarrow f\left( 0 \right) = \log \left( {1 + 0} \right)\]
\[ \Rightarrow f\left( 0 \right) = \log \left( 1 \right)\]
As \[\log \left( 1 \right) = 0\], we get
\[ \Rightarrow f\left( 0 \right) = 0\]
Now, on differentiating \[f\left( x \right)\] we get
\[ \Rightarrow {f'}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\log \left( {1 + x} \right)} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f'}\left( x \right) = \dfrac{1}{{1 + x}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f'}\left( 0 \right) = \dfrac{1}{{1 + 0}}\]
On simplification, we get
\[ \Rightarrow {f'}\left( 0 \right) = 1\]
Now, differentiating \[{f'}\left( x \right)\], we get
\[ \Rightarrow {f^{''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\dfrac{1}{{1 + x}}} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f^{''}}\left( x \right) = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f^{''}}\left( 0 \right) = - \dfrac{1}{{{{\left( {1 + 0} \right)}^2}}}\]
On simplification, we get
\[ \Rightarrow {f^{''}}\left( 0 \right) = - 1\]
In the same way, differentiating \[{f^{''}}\left( x \right)\], we get
\[ \Rightarrow {f^{'''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( { - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f^{'''}}\left( x \right) = \dfrac{2}{{{{\left( {1 + x} \right)}^3}}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f^{'''}}\left( 0 \right) = \dfrac{2}{{{{\left( {1 + 0} \right)}^3}}}\]
On simplification, we get
\[ \Rightarrow {f^{'''}}\left( 0 \right) = 2\]
Now, differentiating \[{f^{'''}}\left( x \right)\], we get
\[ \Rightarrow {f^{''''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\dfrac{2}{{{{\left( {1 + x} \right)}^3}}}} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f^{''''}}\left( x \right) = - \dfrac{6}{{{{\left( {1 + x} \right)}^4}}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f^{''''}}\left( 0 \right) = - \dfrac{6}{{{{\left( {1 + 0} \right)}^4}}}\]
On simplification, we get
\[ \Rightarrow {f^{''''}}\left( 0 \right) = - 6\]
Therefore, we get the values as \[f\left( 0 \right) = 0\], \[{f'}\left( 0 \right) = 1\], \[{f^{''}}\left( 0 \right) = - 1\], \[{f^{'''}}\left( 0 \right) = 2\] and \[{f^{''''}}\left( 0 \right) = - 6\].
From Maclaurin’s theorem, we know
\[f\left( x \right) = f\left( 0 \right) + x{f'}\left( 0 \right) + \dfrac{{{x^2}}}{{2!}}{f^{''}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}{f^{'''}}\left( 0 \right) + \dfrac{{{x^4}}}{{4!}}{f^{''''}}\left( 0 \right) + ...\]
Putting the values of \[f\left( x \right)\], \[f\left( 0 \right)\], \[{f'}\left( 0 \right)\], \[{f^{''}}\left( 0 \right)\], \[{f^{'''}}\left( 0 \right)\] and \[{f^{''''}}\left( 0 \right)\], we get
\[ \Rightarrow \log \left( {1 + x} \right) = 0 + x \times \left( 1 \right) + \dfrac{{{x^2}}}{{2!}} \times \left( { - 1} \right) + \dfrac{{{x^3}}}{{3!}} \times \left( 2 \right) + \dfrac{{{x^4}}}{{4!}} \times \left( { - 6} \right) + ...\]
On simplification, we get
\[ \Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{{2!}} + \dfrac{{2{x^3}}}{{3!}} - \dfrac{{6{x^4}}}{{4!}} + ...\]
On further simplification we get
\[ \Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{{2 \times 1}} + \dfrac{{2{x^3}}}{{3 \times 2 \times 1}} - \dfrac{{6{x^4}}}{{4 \times 3 \times 2 \times 1}} + ...\]
After calculation, we get
\[ \Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...\]
Therefore, expanding \[\log \left( {1 + x} \right)\] in ascending powers of \[x\] up to the term containing \[{x^4}\], we get
\[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...\]
Note:
Here we have differentiated \[f\left( x \right)\] four times because we required expansion up to \[{x^4}\]. For example, if we require expansion up to \[{x^6}\] then we have to differentiate \[f\left( x \right)\] six times. So, we have to differentiate the given \[f\left( x \right)\] up to the power of \[x\] required.
Complete step by step answer:
Let \[f\left( x \right) = \log \left( {1 + x} \right)\]
Putting \[x = 0\], we get
\[ \Rightarrow f\left( 0 \right) = \log \left( {1 + 0} \right)\]
\[ \Rightarrow f\left( 0 \right) = \log \left( 1 \right)\]
As \[\log \left( 1 \right) = 0\], we get
\[ \Rightarrow f\left( 0 \right) = 0\]
Now, on differentiating \[f\left( x \right)\] we get
\[ \Rightarrow {f'}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\log \left( {1 + x} \right)} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f'}\left( x \right) = \dfrac{1}{{1 + x}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f'}\left( 0 \right) = \dfrac{1}{{1 + 0}}\]
On simplification, we get
\[ \Rightarrow {f'}\left( 0 \right) = 1\]
Now, differentiating \[{f'}\left( x \right)\], we get
\[ \Rightarrow {f^{''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\dfrac{1}{{1 + x}}} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f^{''}}\left( x \right) = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f^{''}}\left( 0 \right) = - \dfrac{1}{{{{\left( {1 + 0} \right)}^2}}}\]
On simplification, we get
\[ \Rightarrow {f^{''}}\left( 0 \right) = - 1\]
In the same way, differentiating \[{f^{''}}\left( x \right)\], we get
\[ \Rightarrow {f^{'''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( { - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f^{'''}}\left( x \right) = \dfrac{2}{{{{\left( {1 + x} \right)}^3}}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f^{'''}}\left( 0 \right) = \dfrac{2}{{{{\left( {1 + 0} \right)}^3}}}\]
On simplification, we get
\[ \Rightarrow {f^{'''}}\left( 0 \right) = 2\]
Now, differentiating \[{f^{'''}}\left( x \right)\], we get
\[ \Rightarrow {f^{''''}}\left( x \right) = \dfrac{{dy}}{{dx}}\left( {\dfrac{2}{{{{\left( {1 + x} \right)}^3}}}} \right)\]
On simplifying right-hand side of above equation, we get
\[ \Rightarrow {f^{''''}}\left( x \right) = - \dfrac{6}{{{{\left( {1 + x} \right)}^4}}}\]
Putting \[x = 0\], we get
\[ \Rightarrow {f^{''''}}\left( 0 \right) = - \dfrac{6}{{{{\left( {1 + 0} \right)}^4}}}\]
On simplification, we get
\[ \Rightarrow {f^{''''}}\left( 0 \right) = - 6\]
Therefore, we get the values as \[f\left( 0 \right) = 0\], \[{f'}\left( 0 \right) = 1\], \[{f^{''}}\left( 0 \right) = - 1\], \[{f^{'''}}\left( 0 \right) = 2\] and \[{f^{''''}}\left( 0 \right) = - 6\].
From Maclaurin’s theorem, we know
\[f\left( x \right) = f\left( 0 \right) + x{f'}\left( 0 \right) + \dfrac{{{x^2}}}{{2!}}{f^{''}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}{f^{'''}}\left( 0 \right) + \dfrac{{{x^4}}}{{4!}}{f^{''''}}\left( 0 \right) + ...\]
Putting the values of \[f\left( x \right)\], \[f\left( 0 \right)\], \[{f'}\left( 0 \right)\], \[{f^{''}}\left( 0 \right)\], \[{f^{'''}}\left( 0 \right)\] and \[{f^{''''}}\left( 0 \right)\], we get
\[ \Rightarrow \log \left( {1 + x} \right) = 0 + x \times \left( 1 \right) + \dfrac{{{x^2}}}{{2!}} \times \left( { - 1} \right) + \dfrac{{{x^3}}}{{3!}} \times \left( 2 \right) + \dfrac{{{x^4}}}{{4!}} \times \left( { - 6} \right) + ...\]
On simplification, we get
\[ \Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{{2!}} + \dfrac{{2{x^3}}}{{3!}} - \dfrac{{6{x^4}}}{{4!}} + ...\]
On further simplification we get
\[ \Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{{2 \times 1}} + \dfrac{{2{x^3}}}{{3 \times 2 \times 1}} - \dfrac{{6{x^4}}}{{4 \times 3 \times 2 \times 1}} + ...\]
After calculation, we get
\[ \Rightarrow \log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...\]
Therefore, expanding \[\log \left( {1 + x} \right)\] in ascending powers of \[x\] up to the term containing \[{x^4}\], we get
\[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ...\]
Note:
Here we have differentiated \[f\left( x \right)\] four times because we required expansion up to \[{x^4}\]. For example, if we require expansion up to \[{x^6}\] then we have to differentiate \[f\left( x \right)\] six times. So, we have to differentiate the given \[f\left( x \right)\] up to the power of \[x\] required.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

