
How do you expand $ {{\left( x-1 \right)}^{3}} $ using binomial expression?
Answer
524.4k+ views
Hint: We use the binomial form of n-degree of the difference of two terms $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ . We put the values $ n=3,a=x,b=1 $ to get the simplified form of $ {{\left( x-1 \right)}^{3}} $ . We can also find the simplification of the given polynomial $ {{\left( x-1 \right)}^{3}} $ according to the identity $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Complete step-by-step answer:
We can use the binomial theorem to find the general form and then put the value of 3.
The binomial form of n-degree polynomial of subtraction of two numbers can be expressed as $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ .
We need to find the cube of difference of two numbers. So, we put $ n=3 $. We get
$ {{\left( a-b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}-{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}-{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Then we directly put the values of $ a=x,b=1 $ to find the simplification
$ {{\left( x-1 \right)}^{3}}={}^{3}{{C}_{0}}{{x}^{3}}{{1}^{0}}-{}^{3}{{C}_{1}}{{x}^{3-1}}{{1}^{1}}+{}^{3}{{C}_{2}}{{x}^{3-2}}{{1}^{2}}-{}^{3}{{C}_{3}}{{x}^{3-3}}{{1}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1 $ .
We can also write the simplification in the form of
$ {{\left( x-1 \right)}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1={{x}^{3}}-3x\left( x-1 \right)-1 $ .
So, the correct answer is “Option B”.
Note: We need to find the simplified form of $ {{\left( x-1 \right)}^{3}} $ . This is the cube of difference of two numbers. We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
We need to multiply the term $ \left( a-b \right) $ on both side of the identity $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
On the left side of the equation, we get $ {{\left( a-b \right)}^{2}}\left( a-b \right)={{\left( a-b \right)}^{3}} $ .
On the right side we have $ \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) $ . We use multiplication and get
$
\Rightarrow \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) \\
={{a}^{2}}.a+a.{{b}^{2}}-2ab\times a-{{a}^{2}}.b-{{b}^{2}}.b+2ab.b \\
={{a}^{3}}+a{{b}^{2}}-2{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}+2a{{b}^{2}} \\
={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \\
$
We also can take another form where
$ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ .
Now we replace the values for $ a=x,b=1 $ in the equation $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
$
{{\left( x-1 \right)}^{3}} \\
={{x}^{3}}-3{{x}^{2}}\times 1+3x\times {{1}^{2}}-{{1}^{3}} \\
={{x}^{3}}-3{{x}^{2}}+3x-1 \\
$
Complete step-by-step answer:
We can use the binomial theorem to find the general form and then put the value of 3.
The binomial form of n-degree polynomial of subtraction of two numbers can be expressed as $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ .
We need to find the cube of difference of two numbers. So, we put $ n=3 $. We get
$ {{\left( a-b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}-{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}-{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Then we directly put the values of $ a=x,b=1 $ to find the simplification
$ {{\left( x-1 \right)}^{3}}={}^{3}{{C}_{0}}{{x}^{3}}{{1}^{0}}-{}^{3}{{C}_{1}}{{x}^{3-1}}{{1}^{1}}+{}^{3}{{C}_{2}}{{x}^{3-2}}{{1}^{2}}-{}^{3}{{C}_{3}}{{x}^{3-3}}{{1}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1 $ .
We can also write the simplification in the form of
$ {{\left( x-1 \right)}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1={{x}^{3}}-3x\left( x-1 \right)-1 $ .
So, the correct answer is “Option B”.
Note: We need to find the simplified form of $ {{\left( x-1 \right)}^{3}} $ . This is the cube of difference of two numbers. We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
We need to multiply the term $ \left( a-b \right) $ on both side of the identity $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
On the left side of the equation, we get $ {{\left( a-b \right)}^{2}}\left( a-b \right)={{\left( a-b \right)}^{3}} $ .
On the right side we have $ \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) $ . We use multiplication and get
$
\Rightarrow \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) \\
={{a}^{2}}.a+a.{{b}^{2}}-2ab\times a-{{a}^{2}}.b-{{b}^{2}}.b+2ab.b \\
={{a}^{3}}+a{{b}^{2}}-2{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}+2a{{b}^{2}} \\
={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \\
$
We also can take another form where
$ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ .
Now we replace the values for $ a=x,b=1 $ in the equation $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
$
{{\left( x-1 \right)}^{3}} \\
={{x}^{3}}-3{{x}^{2}}\times 1+3x\times {{1}^{2}}-{{1}^{3}} \\
={{x}^{3}}-3{{x}^{2}}+3x-1 \\
$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

