
How do you expand $ {{\left( x-1 \right)}^{3}} $ using binomial expression?
Answer
507.9k+ views
Hint: We use the binomial form of n-degree of the difference of two terms $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ . We put the values $ n=3,a=x,b=1 $ to get the simplified form of $ {{\left( x-1 \right)}^{3}} $ . We can also find the simplification of the given polynomial $ {{\left( x-1 \right)}^{3}} $ according to the identity $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Complete step-by-step answer:
We can use the binomial theorem to find the general form and then put the value of 3.
The binomial form of n-degree polynomial of subtraction of two numbers can be expressed as $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ .
We need to find the cube of difference of two numbers. So, we put $ n=3 $. We get
$ {{\left( a-b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}-{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}-{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Then we directly put the values of $ a=x,b=1 $ to find the simplification
$ {{\left( x-1 \right)}^{3}}={}^{3}{{C}_{0}}{{x}^{3}}{{1}^{0}}-{}^{3}{{C}_{1}}{{x}^{3-1}}{{1}^{1}}+{}^{3}{{C}_{2}}{{x}^{3-2}}{{1}^{2}}-{}^{3}{{C}_{3}}{{x}^{3-3}}{{1}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1 $ .
We can also write the simplification in the form of
$ {{\left( x-1 \right)}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1={{x}^{3}}-3x\left( x-1 \right)-1 $ .
So, the correct answer is “Option B”.
Note: We need to find the simplified form of $ {{\left( x-1 \right)}^{3}} $ . This is the cube of difference of two numbers. We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
We need to multiply the term $ \left( a-b \right) $ on both side of the identity $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
On the left side of the equation, we get $ {{\left( a-b \right)}^{2}}\left( a-b \right)={{\left( a-b \right)}^{3}} $ .
On the right side we have $ \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) $ . We use multiplication and get
$
\Rightarrow \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) \\
={{a}^{2}}.a+a.{{b}^{2}}-2ab\times a-{{a}^{2}}.b-{{b}^{2}}.b+2ab.b \\
={{a}^{3}}+a{{b}^{2}}-2{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}+2a{{b}^{2}} \\
={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \\
$
We also can take another form where
$ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ .
Now we replace the values for $ a=x,b=1 $ in the equation $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
$
{{\left( x-1 \right)}^{3}} \\
={{x}^{3}}-3{{x}^{2}}\times 1+3x\times {{1}^{2}}-{{1}^{3}} \\
={{x}^{3}}-3{{x}^{2}}+3x-1 \\
$
Complete step-by-step answer:
We can use the binomial theorem to find the general form and then put the value of 3.
The binomial form of n-degree polynomial of subtraction of two numbers can be expressed as $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ .
We need to find the cube of difference of two numbers. So, we put $ n=3 $. We get
$ {{\left( a-b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}-{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}-{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Then we directly put the values of $ a=x,b=1 $ to find the simplification
$ {{\left( x-1 \right)}^{3}}={}^{3}{{C}_{0}}{{x}^{3}}{{1}^{0}}-{}^{3}{{C}_{1}}{{x}^{3-1}}{{1}^{1}}+{}^{3}{{C}_{2}}{{x}^{3-2}}{{1}^{2}}-{}^{3}{{C}_{3}}{{x}^{3-3}}{{1}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1 $ .
We can also write the simplification in the form of
$ {{\left( x-1 \right)}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1={{x}^{3}}-3x\left( x-1 \right)-1 $ .
So, the correct answer is “Option B”.
Note: We need to find the simplified form of $ {{\left( x-1 \right)}^{3}} $ . This is the cube of difference of two numbers. We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
We need to multiply the term $ \left( a-b \right) $ on both side of the identity $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
On the left side of the equation, we get $ {{\left( a-b \right)}^{2}}\left( a-b \right)={{\left( a-b \right)}^{3}} $ .
On the right side we have $ \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) $ . We use multiplication and get
$
\Rightarrow \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) \\
={{a}^{2}}.a+a.{{b}^{2}}-2ab\times a-{{a}^{2}}.b-{{b}^{2}}.b+2ab.b \\
={{a}^{3}}+a{{b}^{2}}-2{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}+2a{{b}^{2}} \\
={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \\
$
We also can take another form where
$ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ .
Now we replace the values for $ a=x,b=1 $ in the equation $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
$
{{\left( x-1 \right)}^{3}} \\
={{x}^{3}}-3{{x}^{2}}\times 1+3x\times {{1}^{2}}-{{1}^{3}} \\
={{x}^{3}}-3{{x}^{2}}+3x-1 \\
$
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

