
How do you expand $ {{\left( x-1 \right)}^{3}} $ using binomial expression?
Answer
524.4k+ views
Hint: We use the binomial form of n-degree of the difference of two terms $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ . We put the values $ n=3,a=x,b=1 $ to get the simplified form of $ {{\left( x-1 \right)}^{3}} $ . We can also find the simplification of the given polynomial $ {{\left( x-1 \right)}^{3}} $ according to the identity $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Complete step-by-step answer:
We can use the binomial theorem to find the general form and then put the value of 3.
The binomial form of n-degree polynomial of subtraction of two numbers can be expressed as $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ .
We need to find the cube of difference of two numbers. So, we put $ n=3 $. We get
$ {{\left( a-b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}-{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}-{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Then we directly put the values of $ a=x,b=1 $ to find the simplification
$ {{\left( x-1 \right)}^{3}}={}^{3}{{C}_{0}}{{x}^{3}}{{1}^{0}}-{}^{3}{{C}_{1}}{{x}^{3-1}}{{1}^{1}}+{}^{3}{{C}_{2}}{{x}^{3-2}}{{1}^{2}}-{}^{3}{{C}_{3}}{{x}^{3-3}}{{1}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1 $ .
We can also write the simplification in the form of
$ {{\left( x-1 \right)}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1={{x}^{3}}-3x\left( x-1 \right)-1 $ .
So, the correct answer is “Option B”.
Note: We need to find the simplified form of $ {{\left( x-1 \right)}^{3}} $ . This is the cube of difference of two numbers. We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
We need to multiply the term $ \left( a-b \right) $ on both side of the identity $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
On the left side of the equation, we get $ {{\left( a-b \right)}^{2}}\left( a-b \right)={{\left( a-b \right)}^{3}} $ .
On the right side we have $ \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) $ . We use multiplication and get
$
\Rightarrow \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) \\
={{a}^{2}}.a+a.{{b}^{2}}-2ab\times a-{{a}^{2}}.b-{{b}^{2}}.b+2ab.b \\
={{a}^{3}}+a{{b}^{2}}-2{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}+2a{{b}^{2}} \\
={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \\
$
We also can take another form where
$ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ .
Now we replace the values for $ a=x,b=1 $ in the equation $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
$
{{\left( x-1 \right)}^{3}} \\
={{x}^{3}}-3{{x}^{2}}\times 1+3x\times {{1}^{2}}-{{1}^{3}} \\
={{x}^{3}}-3{{x}^{2}}+3x-1 \\
$
Complete step-by-step answer:
We can use the binomial theorem to find the general form and then put the value of 3.
The binomial form of n-degree polynomial of subtraction of two numbers can be expressed as $ {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}} $ .
We need to find the cube of difference of two numbers. So, we put $ n=3 $. We get
$ {{\left( a-b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}-{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}-{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Then we directly put the values of $ a=x,b=1 $ to find the simplification
$ {{\left( x-1 \right)}^{3}}={}^{3}{{C}_{0}}{{x}^{3}}{{1}^{0}}-{}^{3}{{C}_{1}}{{x}^{3-1}}{{1}^{1}}+{}^{3}{{C}_{2}}{{x}^{3-2}}{{1}^{2}}-{}^{3}{{C}_{3}}{{x}^{3-3}}{{1}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1 $ .
We can also write the simplification in the form of
$ {{\left( x-1 \right)}^{3}}={{x}^{3}}-3{{x}^{2}}+3x-1={{x}^{3}}-3x\left( x-1 \right)-1 $ .
So, the correct answer is “Option B”.
Note: We need to find the simplified form of $ {{\left( x-1 \right)}^{3}} $ . This is the cube of difference of two numbers. We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
We need to multiply the term $ \left( a-b \right) $ on both side of the identity $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ .
On the left side of the equation, we get $ {{\left( a-b \right)}^{2}}\left( a-b \right)={{\left( a-b \right)}^{3}} $ .
On the right side we have $ \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) $ . We use multiplication and get
$
\Rightarrow \left( {{a}^{2}}+{{b}^{2}}-2ab \right)\left( a-b \right) \\
={{a}^{2}}.a+a.{{b}^{2}}-2ab\times a-{{a}^{2}}.b-{{b}^{2}}.b+2ab.b \\
={{a}^{3}}+a{{b}^{2}}-2{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}+2a{{b}^{2}} \\
={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \\
$
We also can take another form where
$ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ .
Now we replace the values for $ a=x,b=1 $ in the equation $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
$
{{\left( x-1 \right)}^{3}} \\
={{x}^{3}}-3{{x}^{2}}\times 1+3x\times {{1}^{2}}-{{1}^{3}} \\
={{x}^{3}}-3{{x}^{2}}+3x-1 \\
$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

