Answer
Verified
421.5k+ views
Hint: For the above question we will use the identity $\left( {a + b} \right)\left( {c + d} \right) = ac + ad + bc + bd$. Now, compare the expression with $\left( {a + b} \right)\left( {c + d} \right)$ to get the values of a, b, c, and d. By using this identity in the above question, we will get the result easily, otherwise, we will face some difficulty while simplification without using the identity in these types of problems.
Complete step-by-step solution:
We have to expand the given polynomial $\left( {2x + 3} \right)\left( {2x + 5} \right)$ using identities.
We know that,
$\left( {a + b} \right)\left( {c + d} \right) = ac + ad + bc + bd$
Now, we can compare the given expression and the expression in the above equation. So, we can get values of a, b, c and d respectively by comparison and hence put the values of (a, b, c, d) calculated in the equation to get the expansion of $\left( {2x + 3} \right)\left( {2x + 5} \right)$.
Now we will use the above identity to solve the given question as follow,
$ \Rightarrow \left( {2x + 3} \right)\left( {2x + 5} \right) = 2x \times 2x + 2x \times 5 + 3 \times 2x + 3 \times 5$
Multiply the terms,
$ \Rightarrow \left( {2x + 3} \right)\left( {2x + 5} \right) = 4{x^2} + 10x + 6x + 15$
Now, add the like terms,
$\therefore \left( {2x + 3} \right)\left( {2x + 5} \right) = 4{x^2} + 16x + 15$
Hence, the expansion of $\left( {2x + 3} \right)\left( {2x + 5} \right)$ is $4{x^2} + 16x + 15$.
Note: Be careful while doing calculation as you can make mistakes and you will get the incorrect answer. Also, remember the different identities used in algebra as it makes your approach to the question very quickly in the right direction. Also remember the fact about the identity which is that identity is equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variable ) produces the same value for all the values of the variables within a certain range of validity. If an equation satisfies all the values then it will be an identity.
Complete step-by-step solution:
We have to expand the given polynomial $\left( {2x + 3} \right)\left( {2x + 5} \right)$ using identities.
We know that,
$\left( {a + b} \right)\left( {c + d} \right) = ac + ad + bc + bd$
Now, we can compare the given expression and the expression in the above equation. So, we can get values of a, b, c and d respectively by comparison and hence put the values of (a, b, c, d) calculated in the equation to get the expansion of $\left( {2x + 3} \right)\left( {2x + 5} \right)$.
Now we will use the above identity to solve the given question as follow,
$ \Rightarrow \left( {2x + 3} \right)\left( {2x + 5} \right) = 2x \times 2x + 2x \times 5 + 3 \times 2x + 3 \times 5$
Multiply the terms,
$ \Rightarrow \left( {2x + 3} \right)\left( {2x + 5} \right) = 4{x^2} + 10x + 6x + 15$
Now, add the like terms,
$\therefore \left( {2x + 3} \right)\left( {2x + 5} \right) = 4{x^2} + 16x + 15$
Hence, the expansion of $\left( {2x + 3} \right)\left( {2x + 5} \right)$ is $4{x^2} + 16x + 15$.
Note: Be careful while doing calculation as you can make mistakes and you will get the incorrect answer. Also, remember the different identities used in algebra as it makes your approach to the question very quickly in the right direction. Also remember the fact about the identity which is that identity is equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variable ) produces the same value for all the values of the variables within a certain range of validity. If an equation satisfies all the values then it will be an identity.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE