
Examine the continuity at \[x = 0\]: \[f\left( x \right) = 1 + \dfrac{{\left| x \right|}}{x}\] for \[x \ne 0\] and \[f\left( 0 \right) = 1\].
Answer
500.4k+ views
Hint: Here, in the question, we have been given a function in the form of variable \[x\]. And we are asked to examine the continuity of the given function at all the points except \[x = 0\]. We will check the continuity of the function at \[x < 0\] and \[x > 0\] separately and reach a desired conclusion.
Complete step by step solution:
Given \[f\left( x \right) = 1 + \dfrac{{\left| x \right|}}{x}\]
And \[f\left( 0 \right) = 1\]
Let us first understand the meaning of \[\left| x \right|\]
Let \[g\left( x \right) = \left| x \right|\]
Then, \[g\left( x \right)\] is defined as:
\[g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\;x\;if\;x \geqslant 0} \\
{ - x\;if\;x < 0}
\end{array}} \right.\]
According to this definition, if the value of \[x\] is greater than or equal to \[0\], then the value of modulus of \[x\] remains the same as the value of \[x\] but if the value of \[x\] is less than zero, then the value of modulus of \[x\] becomes the negative of \[x\].
Now, we have \[f\left( x \right) = 1 + \dfrac{{\left| x \right|}}{x}\]. Therefore
The given function is defined at the given point \[x = 0\] and its value is \[1\].
Now we will calculate the left hand limit and the right hand limit for the function at given point \[x = 0\].
The left hand limit of \[f\] at \[0\] is:
\[
\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} 1 + \dfrac{{\left( { - x} \right)}}{x} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0 \;
\]
The right hand limit of \[f\] at \[0\] is:
\[
\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} 1 + \dfrac{x}{x} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 2 \;
\]
Since, Left hand limit of the function is not equal to the right hand limit, the function is discontinuous at \[x = 0\].
Note: Whenever we face such types of questions, we just have to check the left hand limits and right hand limit of the given function especially in case when continuity is being checked at \[x = 0\]. If the left hand limit, right hand limit and the value of function at \[x = 0\] are all equal then the function is continuous for all values of \[x\]. In case, the left hand limit is equal to the right hand limit but not equal to the value of the function at a given point, then the function will be discontinuous at that point.
Complete step by step solution:
Given \[f\left( x \right) = 1 + \dfrac{{\left| x \right|}}{x}\]
And \[f\left( 0 \right) = 1\]
Let us first understand the meaning of \[\left| x \right|\]
Let \[g\left( x \right) = \left| x \right|\]
Then, \[g\left( x \right)\] is defined as:
\[g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\;x\;if\;x \geqslant 0} \\
{ - x\;if\;x < 0}
\end{array}} \right.\]
According to this definition, if the value of \[x\] is greater than or equal to \[0\], then the value of modulus of \[x\] remains the same as the value of \[x\] but if the value of \[x\] is less than zero, then the value of modulus of \[x\] becomes the negative of \[x\].
Now, we have \[f\left( x \right) = 1 + \dfrac{{\left| x \right|}}{x}\]. Therefore
The given function is defined at the given point \[x = 0\] and its value is \[1\].
Now we will calculate the left hand limit and the right hand limit for the function at given point \[x = 0\].
The left hand limit of \[f\] at \[0\] is:
\[
\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} 1 + \dfrac{{\left( { - x} \right)}}{x} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0 \;
\]
The right hand limit of \[f\] at \[0\] is:
\[
\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} 1 + \dfrac{x}{x} \\
\\
\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 2 \;
\]
Since, Left hand limit of the function is not equal to the right hand limit, the function is discontinuous at \[x = 0\].
Note: Whenever we face such types of questions, we just have to check the left hand limits and right hand limit of the given function especially in case when continuity is being checked at \[x = 0\]. If the left hand limit, right hand limit and the value of function at \[x = 0\] are all equal then the function is continuous for all values of \[x\]. In case, the left hand limit is equal to the right hand limit but not equal to the value of the function at a given point, then the function will be discontinuous at that point.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

