
Evaluate\[\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58.\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\tan 53\tan 77\]. All angles in degrees.
Answer
606.9k+ views
Hint: In these types of questions use the transformation formula and some basic concepts of trigonometry.
\[\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58.\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\tan 53\tan 77\]
Complete step-by-step answer:
Since we know by the trigonometric formula tan (90-x) =cotx (where x is an angle)
So tan77, tan53 can be written as tan (90-13), tan (90-37)
$\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\tan (90 - 37)\tan (90 - 13)$
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\cot 37\cot 13$ (By the formula tan (90-x) =cotx)
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\dfrac{1}{{\tan 37}}\dfrac{1}{{\tan 13}}$ (By the formula $\cot x = \dfrac{1}{{\tan x}}$)
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 45$
Now putting the value of tan 45 i.e. tan 45= 1
\[=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\]
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan (90 - 58) - \dfrac{5}{3}$ (By the formula tan (90-x) =cotx)
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}{\cot ^2}58 - \dfrac{5}{3}$= $\dfrac{2}{3}(\cos e{c^2}58 - {\cot ^2}58) - \dfrac{5}{3}$
By the trigonometric formula $\cos e{c^2}x - {\cot ^2}x = 1$
$=\dfrac{2}{3}(1) - \dfrac{5}{3}$ {Since$(\cos e{c^2}58 - {\cot ^2}58) = 1$}
$\dfrac{2}{3} - \dfrac{5}{3}$=$ - 1$
So \[\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58.\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\tan 53\tan 77\] = $ - 1$
Note: In these types of questions use the transformations formulas to simplify the question use trigonometric values like tan45=1 and some trigonometric identities like $\cos e{c^2}x - {\cot ^2}x = 1$ to simplify the result as much as possible.
\[\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58.\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\tan 53\tan 77\]
Complete step-by-step answer:
Since we know by the trigonometric formula tan (90-x) =cotx (where x is an angle)
So tan77, tan53 can be written as tan (90-13), tan (90-37)
$\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\tan (90 - 37)\tan (90 - 13)$
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\cot 37\cot 13$ (By the formula tan (90-x) =cotx)
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\dfrac{1}{{\tan 37}}\dfrac{1}{{\tan 13}}$ (By the formula $\cot x = \dfrac{1}{{\tan x}}$)
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\tan 45$
Now putting the value of tan 45 i.e. tan 45= 1
\[=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan 32 - \dfrac{5}{3}\]
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58\tan (90 - 58) - \dfrac{5}{3}$ (By the formula tan (90-x) =cotx)
$=\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}{\cot ^2}58 - \dfrac{5}{3}$= $\dfrac{2}{3}(\cos e{c^2}58 - {\cot ^2}58) - \dfrac{5}{3}$
By the trigonometric formula $\cos e{c^2}x - {\cot ^2}x = 1$
$=\dfrac{2}{3}(1) - \dfrac{5}{3}$ {Since$(\cos e{c^2}58 - {\cot ^2}58) = 1$}
$\dfrac{2}{3} - \dfrac{5}{3}$=$ - 1$
So \[\dfrac{2}{3}\cos e{c^2}58 - \dfrac{2}{3}\cot 58.\tan 32 - \dfrac{5}{3}\tan 13\tan 37\tan 45\tan 53\tan 77\] = $ - 1$
Note: In these types of questions use the transformations formulas to simplify the question use trigonometric values like tan45=1 and some trigonometric identities like $\cos e{c^2}x - {\cot ^2}x = 1$ to simplify the result as much as possible.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

