
Evaluate without using trigonometric table
$\dfrac{\cos e{{c}^{2}}\left( {{90}^{\circ }}-\theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{\cos e{{c}^{2}}{{70}^{\circ }}-{{\tan }^{2}}{{20}^{\circ }}}$
Answer
515.4k+ views
Hint: In this question, we have to evaluate the given trigonometric function. Thus, we will use the trigonometric formulas and identities to get the solution. Thus, first we will apply the trigonometric formula and identity $\cos ec\left( {{90}^{\circ }}-\theta \right)=\sec \theta $ and $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ respectively in the given equation. After the necessary calculations, we will again apply the trigonometric formula $\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ and then apply the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ in the equation. In the end, we will make the necessary calculations, to get the required solution for the problem.
Complete step by step answer:
According to the problem, we have to evaluate the given trigonometric expression.
Thus, we will use the trigonometric formulas and identities to get the solution.
The expression given to us is $\dfrac{\cos e{{c}^{2}}\left( {{90}^{\circ }}-\theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{\cos e{{c}^{2}}{{70}^{\circ }}-{{\tan }^{2}}{{20}^{\circ }}}$ ---- (1)
So, first we will apply the trigonometric formula $\cos ec\left( {{90}^{\circ }}-\theta \right)=\sec \theta $ in equation (1), we get
$= \dfrac{{{\sec }^{2}}\left( \theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{\cos e{{c}^{2}}\left( {{90}^{\circ }}-{{20}^{\circ }} \right)-{{\tan }^{2}}{{20}^{\circ }}}$
On further solving the above expression, we get
$= \dfrac{{{\sec }^{2}}\left( \theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{{{\sec }^{2}}{{20}^{\circ }}-{{\tan }^{2}}{{20}^{\circ }}}$
Now, we will apply the trigonometric identity $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ in the above equation, we get
$= \dfrac{1}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Now, we will apply the trigonometric formula $\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $in the above equation, we get
$= \dfrac{1}{4\left( {{\cos }^{2}}\left( {{90}^{\circ }}-{{42}^{\circ }} \right)+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
On further simplification, we get
$= \dfrac{1}{4\left( {{\sin }^{2}}{{42}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Now, we will apply the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ in the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Now, we will again apply the trigonometric formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}{{\sin }^{2}}\left( {{90}^{\circ }}-{{52}^{\circ }} \right){{\sec }^{2}}{{52}^{\circ }}}{1}$
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}{{\cos }^{2}}{{52}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Again, we will apply the trigonometric formula $\sec \theta =\dfrac{1}{\cos \theta }$ in the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}\dfrac{1}{{{\sec }^{2}}{{52}^{\circ }}}{{\sec }^{2}}{{52}^{\circ }}}{1}$
On further solving the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}{1}$
$= \dfrac{1}{4}-\dfrac{2}{3}$
Now, we will take the LCM of the denominator in the above equation, we get
$= \dfrac{3-2\left( 4 \right)}{12}$
$= \dfrac{-5}{12}$ which is the required solution
Therefore, for the given equation $\dfrac{\cos e{{c}^{2}}\left( {{90}^{\circ }}-\theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{\cos e{{c}^{2}}{{70}^{\circ }}-{{\tan }^{2}}{{20}^{\circ }}}$ , its simplified value is equal to $\dfrac{-5}{12}$ .
Note: While solving this problem, do mention all the steps properly to avoid error and confusion. Do mention all the formulas and identity carefully to get an accurate solution. Do not use the trigonometric table to get the solution.
Complete step by step answer:
According to the problem, we have to evaluate the given trigonometric expression.
Thus, we will use the trigonometric formulas and identities to get the solution.
The expression given to us is $\dfrac{\cos e{{c}^{2}}\left( {{90}^{\circ }}-\theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{\cos e{{c}^{2}}{{70}^{\circ }}-{{\tan }^{2}}{{20}^{\circ }}}$ ---- (1)
So, first we will apply the trigonometric formula $\cos ec\left( {{90}^{\circ }}-\theta \right)=\sec \theta $ in equation (1), we get
$= \dfrac{{{\sec }^{2}}\left( \theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{\cos e{{c}^{2}}\left( {{90}^{\circ }}-{{20}^{\circ }} \right)-{{\tan }^{2}}{{20}^{\circ }}}$
On further solving the above expression, we get
$= \dfrac{{{\sec }^{2}}\left( \theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{{{\sec }^{2}}{{20}^{\circ }}-{{\tan }^{2}}{{20}^{\circ }}}$
Now, we will apply the trigonometric identity $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ in the above equation, we get
$= \dfrac{1}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Now, we will apply the trigonometric formula $\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $in the above equation, we get
$= \dfrac{1}{4\left( {{\cos }^{2}}\left( {{90}^{\circ }}-{{42}^{\circ }} \right)+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
On further simplification, we get
$= \dfrac{1}{4\left( {{\sin }^{2}}{{42}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Now, we will apply the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ in the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Now, we will again apply the trigonometric formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}{{\sin }^{2}}\left( {{90}^{\circ }}-{{52}^{\circ }} \right){{\sec }^{2}}{{52}^{\circ }}}{1}$
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}{{\cos }^{2}}{{52}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{1}$
Again, we will apply the trigonometric formula $\sec \theta =\dfrac{1}{\cos \theta }$ in the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}\dfrac{1}{{{\sec }^{2}}{{52}^{\circ }}}{{\sec }^{2}}{{52}^{\circ }}}{1}$
On further solving the above equation, we get
$= \dfrac{1}{4\left( 1 \right)}-\dfrac{2{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}{1}$
$= \dfrac{1}{4}-\dfrac{2}{3}$
Now, we will take the LCM of the denominator in the above equation, we get
$= \dfrac{3-2\left( 4 \right)}{12}$
$= \dfrac{-5}{12}$ which is the required solution
Therefore, for the given equation $\dfrac{\cos e{{c}^{2}}\left( {{90}^{\circ }}-\theta \right)-{{\tan }^{2}}\left( \theta \right)}{4\left( {{\cos }^{2}}{{48}^{\circ }}+{{\cos }^{2}}{{42}^{\circ }} \right)}-\dfrac{2{{\tan }^{2}}{{30}^{\circ }}{{\sin }^{2}}{{38}^{\circ }}{{\sec }^{2}}{{52}^{\circ }}}{\cos e{{c}^{2}}{{70}^{\circ }}-{{\tan }^{2}}{{20}^{\circ }}}$ , its simplified value is equal to $\dfrac{-5}{12}$ .
Note: While solving this problem, do mention all the steps properly to avoid error and confusion. Do mention all the formulas and identity carefully to get an accurate solution. Do not use the trigonometric table to get the solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

