
Evaluate the values of $\sin {15^ \circ }$ and $\cos {15^ \circ }$.
Answer
579.3k+ views
Hint:For the value like $\sin {15^ \circ }$, $\cos {15^ \circ }$, $\sin {75^ \circ }$ and $\cos {75^ \circ }$ we need to split the angle into the binomial terms of angles for which the values of trigonometric terms are known. In this problem we need to split \[{15^ \circ }\] into ${45^ \circ }$ and ${30^ \circ }$.
Complete step-by-step answer:
We are asked to find out the values of $\sin {15^ \circ }$ and $\cos {15^ \circ }$. So, firstly let us find the value of and $\sin {15^ \circ }$later on $\cos {15^ \circ }$.
Firstly, split \[{15^ \circ }\] into ${45^ \circ }$ and ${30^ \circ }$.
\[ \Rightarrow \sin \left( {{{15}^ \circ }} \right) = \sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)\]
Here, we need to use the most popular trigonometric formula to expand for further simplification
$\sin \left( {A - B} \right) = \sin A\cos B - \sin B\cos A$
Substituting the $A$ value as ${45^ \circ }$ and $B$ value as ${30^ \circ }$. We get,
$ \Rightarrow \sin {45^ \circ }\cos {30^ \circ } - \sin {30^ \circ }\cos {45^ \circ }$
And we know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, $\sin {30^ \circ } = \dfrac{1}{2}$, $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ and $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Substituting the above values, we will get as follows:
$
\Rightarrow \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
= \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }} \\
= \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
$
Hence, we get $\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, let’s find out $\cos {15^ \circ }$ in a similar way.
Firstly, split \[{15^ \circ }\] into ${45^ \circ }$ and ${30^ \circ }$.
\[ \Rightarrow \cos \left( {{{15}^ \circ }} \right) = \cos \left( {{{45}^ \circ } - {{30}^ \circ }} \right)\]
Here, we need to use the most popular trigonometric formula to expand for further simplification
$\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Substituting the $A$value as ${45^ \circ }$ and $B$ value as ${30^ \circ }$. We get,
$ \Rightarrow \cos {45^ \circ }\cos {30^ \circ } - \sin {45^ \circ }\sin {30^ \circ }$
And we know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, $\sin {30^ \circ } = \dfrac{1}{2}$, $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ and $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Substituting the above values, we will get as follows:
$
\Rightarrow \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{2}} \right) - \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
= \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} \\
$
Hence, we get $\cos {15^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
Note:This problem can be solved in other ways also. We know the formula $\cos 2\theta = 1 - 2{\sin ^2}\theta $ and $\cos 2\theta = 2{\cos ^2}\theta - 1$. By substituting the $\theta = {15^ \circ }$ in the above equations, we can get the same values.
Complete step-by-step answer:
We are asked to find out the values of $\sin {15^ \circ }$ and $\cos {15^ \circ }$. So, firstly let us find the value of and $\sin {15^ \circ }$later on $\cos {15^ \circ }$.
Firstly, split \[{15^ \circ }\] into ${45^ \circ }$ and ${30^ \circ }$.
\[ \Rightarrow \sin \left( {{{15}^ \circ }} \right) = \sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)\]
Here, we need to use the most popular trigonometric formula to expand for further simplification
$\sin \left( {A - B} \right) = \sin A\cos B - \sin B\cos A$
Substituting the $A$ value as ${45^ \circ }$ and $B$ value as ${30^ \circ }$. We get,
$ \Rightarrow \sin {45^ \circ }\cos {30^ \circ } - \sin {30^ \circ }\cos {45^ \circ }$
And we know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, $\sin {30^ \circ } = \dfrac{1}{2}$, $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ and $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Substituting the above values, we will get as follows:
$
\Rightarrow \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) \\
= \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }} \\
= \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
$
Hence, we get $\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, let’s find out $\cos {15^ \circ }$ in a similar way.
Firstly, split \[{15^ \circ }\] into ${45^ \circ }$ and ${30^ \circ }$.
\[ \Rightarrow \cos \left( {{{15}^ \circ }} \right) = \cos \left( {{{45}^ \circ } - {{30}^ \circ }} \right)\]
Here, we need to use the most popular trigonometric formula to expand for further simplification
$\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Substituting the $A$value as ${45^ \circ }$ and $B$ value as ${30^ \circ }$. We get,
$ \Rightarrow \cos {45^ \circ }\cos {30^ \circ } - \sin {45^ \circ }\sin {30^ \circ }$
And we know that $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, $\sin {30^ \circ } = \dfrac{1}{2}$, $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ and $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Substituting the above values, we will get as follows:
$
\Rightarrow \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{2}} \right) - \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
= \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} \\
$
Hence, we get $\cos {15^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}$
Note:This problem can be solved in other ways also. We know the formula $\cos 2\theta = 1 - 2{\sin ^2}\theta $ and $\cos 2\theta = 2{\cos ^2}\theta - 1$. By substituting the $\theta = {15^ \circ }$ in the above equations, we can get the same values.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

