
Evaluate the value of the following limit:
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{\text{x - sinx}}}}{{{{\text{x}}^3}}}\]
Answer
616.2k+ views
Hint: To solve this question we will use L’ Hospital rule to evaluate the value of the given limit. Then at last use the direct result of $\dfrac{sinx}{x}$ when the limit of $x$ tends to zero.
Complete step-by-step answer:
Now, the given limit becomes infinite when we put the value of x. So, we will use the L’ Hospital rule to find the value of the limit. The rule is applicable when there is $\dfrac{0}{0}$, $\dfrac{\infty }{\infty }$ form on putting the limit. In the given limit we get the $\dfrac{0}{0}$ . L’ Hospital rule states that if we get the form stated above, we will differentiate both numerator and denominator independently until we get a finite limit.
So, given limit is \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{\text{x - sinx}}}}{{{{\text{x}}^3}}}\]
Applying L’ Hospital rule, differentiating numerator and denominator independently with respect to x, we get
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{\text{1 - cosx}}}}{{{\text{3}}{{\text{x}}^2}}}\]
Now, putting the value of limit, we can see that there is still a $\dfrac{0}{0}$ form. So, again applying L’ Hospital rule, we get
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin {\text{x}}}}{{6x}}$
$ \Rightarrow $ $\dfrac{1}{6}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin {\text{x}}}}{{\text{x}}}$
Now, as $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin {\text{x}}}}{{\text{x}}}{\text{ = 1}}$
So, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{\text{x - sinx}}}}{{{{\text{x}}^3}}}{\text{ = }}\dfrac{1}{6}\]
So, the value of the given limit is $\dfrac{1}{6}$.
Note: When we come up with such types of problems in which we have to find the value of the limit. In such questions, first put the value of the given limit and check whether the value is finite or infinite. If the value comes infinite and of the form of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$, then the easiest method to find answer is by applying the L’ Hospital rule. You have to apply L’ Hospital rule until the limit becomes finite.
Complete step-by-step answer:
Now, the given limit becomes infinite when we put the value of x. So, we will use the L’ Hospital rule to find the value of the limit. The rule is applicable when there is $\dfrac{0}{0}$, $\dfrac{\infty }{\infty }$ form on putting the limit. In the given limit we get the $\dfrac{0}{0}$ . L’ Hospital rule states that if we get the form stated above, we will differentiate both numerator and denominator independently until we get a finite limit.
So, given limit is \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{\text{x - sinx}}}}{{{{\text{x}}^3}}}\]
Applying L’ Hospital rule, differentiating numerator and denominator independently with respect to x, we get
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{\text{1 - cosx}}}}{{{\text{3}}{{\text{x}}^2}}}\]
Now, putting the value of limit, we can see that there is still a $\dfrac{0}{0}$ form. So, again applying L’ Hospital rule, we get
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin {\text{x}}}}{{6x}}$
$ \Rightarrow $ $\dfrac{1}{6}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin {\text{x}}}}{{\text{x}}}$
Now, as $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin {\text{x}}}}{{\text{x}}}{\text{ = 1}}$
So, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{\text{x - sinx}}}}{{{{\text{x}}^3}}}{\text{ = }}\dfrac{1}{6}\]
So, the value of the given limit is $\dfrac{1}{6}$.
Note: When we come up with such types of problems in which we have to find the value of the limit. In such questions, first put the value of the given limit and check whether the value is finite or infinite. If the value comes infinite and of the form of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$, then the easiest method to find answer is by applying the L’ Hospital rule. You have to apply L’ Hospital rule until the limit becomes finite.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

