
Evaluate the value of $\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right)$
Answer
574.5k+ views
Hint: In this question, we need to evaluate the value of the function $\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right)$ . For this, we will first check whether the given function is determinate or indeterminate and if found indeterminate then, we will use the L-Hospital’s rule.
Complete step by step solution:
The given function is $\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right)$.
Substituting the value of ‘h’ in the given function, we get
$
\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right) = \dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt \infty }}{{{\infty ^{\left( {\dfrac{3}{2}} \right)}}}} \\
= \dfrac{\infty }{\infty } \\
$
From the above equation, we can see that the value of the function is indeterminate at the infinite value of ‘h’.
So, applying L-Hospital’s rule which tells us that if we have an indeterminate form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] all we have to do is to differentiate the numerator and differentiate the denominator and then take the limit. L hospitals are applicable only if the value of f and g is 0, where f and g are defined functions.
Mathematically, applying the L-Hospital’s rule implies that we have to differentiate the numerator and the denominator individually with respect to the parameter present in the function.
Differentiating the given function with respect to the only parameter ‘h’, we get
$
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\dfrac{d}{{dh}}\left( {\sqrt 1 + \sqrt 2 + .... + \sqrt h } \right)}}{{\dfrac{d}{{dh}}\left( {{h^{\left( {\dfrac{3}{2}} \right)}}} \right)}}} \right) = \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\left( {\dfrac{1}{{2\sqrt h }}} \right)}}{{\left( {\dfrac{{3\sqrt h }}{2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{1}{{3h}}} \right) \\
$
Now, substituting the value of h as infinity in the above equation
$
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right) = \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{1}{{3h}}} \right) \\
= \dfrac{1}{{3(\infty )}} \\
= 0 \\
$
Hence, the value of the function $\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right)$ is equals to zero.
Note: If the given function is in the indeterminate form of \[\dfrac{0}{0}\] then we apply the L-Hospital’s rule where we differentiate the numerator and the denominator of the function until we get a non-zero solution. We have to apply the L-Hospital’s rule on the function until we get the determinate form.
Complete step by step solution:
The given function is $\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right)$.
Substituting the value of ‘h’ in the given function, we get
$
\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right) = \dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt \infty }}{{{\infty ^{\left( {\dfrac{3}{2}} \right)}}}} \\
= \dfrac{\infty }{\infty } \\
$
From the above equation, we can see that the value of the function is indeterminate at the infinite value of ‘h’.
So, applying L-Hospital’s rule which tells us that if we have an indeterminate form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] all we have to do is to differentiate the numerator and differentiate the denominator and then take the limit. L hospitals are applicable only if the value of f and g is 0, where f and g are defined functions.
Mathematically, applying the L-Hospital’s rule implies that we have to differentiate the numerator and the denominator individually with respect to the parameter present in the function.
Differentiating the given function with respect to the only parameter ‘h’, we get
$
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\dfrac{d}{{dh}}\left( {\sqrt 1 + \sqrt 2 + .... + \sqrt h } \right)}}{{\dfrac{d}{{dh}}\left( {{h^{\left( {\dfrac{3}{2}} \right)}}} \right)}}} \right) = \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\left( {\dfrac{1}{{2\sqrt h }}} \right)}}{{\left( {\dfrac{{3\sqrt h }}{2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{1}{{3h}}} \right) \\
$
Now, substituting the value of h as infinity in the above equation
$
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right) = \mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{1}{{3h}}} \right) \\
= \dfrac{1}{{3(\infty )}} \\
= 0 \\
$
Hence, the value of the function $\mathop {\lim }\limits_{h \to \infty } \left( {\dfrac{{\sqrt 1 + \sqrt 2 + .... + \sqrt h }}{{{h^{\left( {\dfrac{3}{2}} \right)}}}}} \right)$ is equals to zero.
Note: If the given function is in the indeterminate form of \[\dfrac{0}{0}\] then we apply the L-Hospital’s rule where we differentiate the numerator and the denominator of the function until we get a non-zero solution. We have to apply the L-Hospital’s rule on the function until we get the determinate form.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

