
Evaluate the value of $\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ .
Answer
576.3k+ views
Hint: Here, we are asked to find the value of $\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ .
Let $I = \int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ and put $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$ and $\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ .
Then, solve the integral by spitting it in two parts ${I_1}$ and ${I_2}$ .
Thus, find the required answer of given integral.
Complete step-by-step answer:
Here, we are asked to find the value of $\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ .
Let $I = \int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ .
Now, $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$
\[
\therefore I = \int {\dfrac{{x - \sin x}}{{1 - \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right)}}dx} \\
\therefore I = \int {\dfrac{{x - \sin x}}{{1 - 1 + 2{{\sin }^2}\dfrac{x}{2}}}dx} \\
\therefore I = \int {\dfrac{{x - \sin x}}{{2{{\sin }^2}\dfrac{x}{2}}}dx} \\
\therefore I = \dfrac{1}{2}\int {\dfrac{x}{{{{\sin }^2}\dfrac{x}{2}}}dx} - \dfrac{1}{2}\int {\dfrac{{\sin x}}{{{{\sin }^2}\dfrac{x}{2}}}dx} \\
\]
Also, $\sin x$ can be written as $2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$
\therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \dfrac{1}{2}\int {\dfrac{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2}}}dx} \\
\therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \dfrac{2}{2}\int {\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}dx} \\
\therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \int {\cot \dfrac{x}{2}dx} \\
$
Let, ${I_1} = \int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} $ and ${I_2} = \int {\cot \dfrac{x}{2}dx} $
First, we will solve ${I_1}$ .
$\therefore {I_1} = \int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} $
$
\therefore {I_1} = x\int {{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \int {\left( {\dfrac{{dx}}{{dx}} \cdot \int {{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} } \right)dx} \\
\therefore {I_1} = x\left( { - 2\cot \dfrac{x}{2}} \right) - \int { - 2\cot \dfrac{x}{2}dx} \\
\therefore {I_1} = - 2x\cot \dfrac{x}{2} + 2\int {\cot \dfrac{x}{2}dx} \\
\therefore {I_1} = - 2x\cot \dfrac{x}{2} + 2\ln \left| {\sin \dfrac{x}{2} \times 2} \right| \\
$
Then, we will solve ${I_2}$ .
$
\therefore {I_2} = \int {\cot \dfrac{x}{2}dx} \\
\therefore {I_2} = \ln \left| {\sin \dfrac{x}{2} \times 2} \right| \\
$
Thus, $I = \dfrac{1}{2}{I_1} - {I_2}$
$
\therefore I = \dfrac{1}{2}\left[ { - 2x\cot \dfrac{x}{2} + 2\ln \left| {2\sin \dfrac{x}{2}} \right|} \right] - \ln \left| {2\sin \dfrac{x}{2}} \right| + C \\
\therefore I = - x\cot \dfrac{x}{2} + \ln \left| {2\sin \dfrac{x}{2}} \right| - \ln \left| {2\sin \dfrac{x}{2}} \right| + C \\
\therefore I = - x\cot \dfrac{x}{2} + C \\
$
Thus, $\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} = - x\cot \dfrac{x}{2} + C$.
Note: In these types of questions, we may not see the answer until the end as the terms cancel out in the end, Hence we should be patient enough to solve these types of questions. Also while doing the substitutions, we must be very careful on the terms dx and dt, as there are high chances that we forgot to change from dx to dt.
Let $I = \int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ and put $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$ and $\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ .
Then, solve the integral by spitting it in two parts ${I_1}$ and ${I_2}$ .
Thus, find the required answer of given integral.
Complete step-by-step answer:
Here, we are asked to find the value of $\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ .
Let $I = \int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} $ .
Now, $\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}$
\[
\therefore I = \int {\dfrac{{x - \sin x}}{{1 - \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right)}}dx} \\
\therefore I = \int {\dfrac{{x - \sin x}}{{1 - 1 + 2{{\sin }^2}\dfrac{x}{2}}}dx} \\
\therefore I = \int {\dfrac{{x - \sin x}}{{2{{\sin }^2}\dfrac{x}{2}}}dx} \\
\therefore I = \dfrac{1}{2}\int {\dfrac{x}{{{{\sin }^2}\dfrac{x}{2}}}dx} - \dfrac{1}{2}\int {\dfrac{{\sin x}}{{{{\sin }^2}\dfrac{x}{2}}}dx} \\
\]
Also, $\sin x$ can be written as $2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
$
\therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \dfrac{1}{2}\int {\dfrac{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2}}}dx} \\
\therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \dfrac{2}{2}\int {\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}dx} \\
\therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \int {\cot \dfrac{x}{2}dx} \\
$
Let, ${I_1} = \int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} $ and ${I_2} = \int {\cot \dfrac{x}{2}dx} $
First, we will solve ${I_1}$ .
$\therefore {I_1} = \int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} $
$
\therefore {I_1} = x\int {{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \int {\left( {\dfrac{{dx}}{{dx}} \cdot \int {{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} } \right)dx} \\
\therefore {I_1} = x\left( { - 2\cot \dfrac{x}{2}} \right) - \int { - 2\cot \dfrac{x}{2}dx} \\
\therefore {I_1} = - 2x\cot \dfrac{x}{2} + 2\int {\cot \dfrac{x}{2}dx} \\
\therefore {I_1} = - 2x\cot \dfrac{x}{2} + 2\ln \left| {\sin \dfrac{x}{2} \times 2} \right| \\
$
Then, we will solve ${I_2}$ .
$
\therefore {I_2} = \int {\cot \dfrac{x}{2}dx} \\
\therefore {I_2} = \ln \left| {\sin \dfrac{x}{2} \times 2} \right| \\
$
Thus, $I = \dfrac{1}{2}{I_1} - {I_2}$
$
\therefore I = \dfrac{1}{2}\left[ { - 2x\cot \dfrac{x}{2} + 2\ln \left| {2\sin \dfrac{x}{2}} \right|} \right] - \ln \left| {2\sin \dfrac{x}{2}} \right| + C \\
\therefore I = - x\cot \dfrac{x}{2} + \ln \left| {2\sin \dfrac{x}{2}} \right| - \ln \left| {2\sin \dfrac{x}{2}} \right| + C \\
\therefore I = - x\cot \dfrac{x}{2} + C \\
$
Thus, $\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} = - x\cot \dfrac{x}{2} + C$.
Note: In these types of questions, we may not see the answer until the end as the terms cancel out in the end, Hence we should be patient enough to solve these types of questions. Also while doing the substitutions, we must be very careful on the terms dx and dt, as there are high chances that we forgot to change from dx to dt.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

